TABLE OF CONTENTS

PLASMA PROPULSION AND TETHERS SESSION

Physical Problems of Artificial Magnetospheric Propulsion José Tito Mendonca – Instituto Superior Tecnico

Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array Yiangos Mikellides – Science Applications International Corporation (SAIC)

Plasma Interactions With a Negative Biased Electrodynamic Tether Jason Vaughn – NASA Marshall Space Flight Center (MSFC)

A 'Free Lunch' Tour of the Jovian System

Juan Sanmartin - Polytechnic University of Madrid

GROUND TESTING TECHNIQUES SESSION

Issues Concerning the International Standard of ESD Ground Test for GEO Satellite Solar Array Mengu Cho – Kyushu Institute of Technology

Electron Beam-Induced ESD Triggering Discharge Tests of Solar Arrays for Space Use Haruhisa Fujii – Nara National College of Technology

Ground Experiment and Numerical Simulation of Spacecraft Arcing in Ambient Plasma Environments Takahisa Masuyama – Osaka University

Development of Solar Array for a Wideband Internetworking Engineering Test and Demonstration Satellite: System Design Tetsuo Sato – Japan Aerospace Exploration Agency (JAXA)

Development of Solar Array for a Wideband Internetworking Satellite: ESD Test Kazuhiro Toyoda – Chiba University

Ground-Based Simulation of Low-Earth Orbit Plasma Conditions: Plasma Generation and Characterization John Williams – Colorado State University

Secondary Arcs on Solar Generators - EMAGS 2 Test Campaign Ludovic Gaillot – EADS Astrium **Characteristic of Charge Accumulation in Glass Materials Under Electron Beam Irradiation** Hiroaki Miyake – Mushashi Institute of Technology

Measurement of Bulk Charge in Dielectric Materials Irradiated by Electron Beam in Vacuum Environment Noriyuki Osawa – Mushashi Institute of Technology

Improved Demonstration of Internal Charging Hazards Using the 'Realistic Electron Environment Facility' (REEF) Keith Ryden – QinetiQ

High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System Todd Schneider – NASA Marshall Space Flight Center (MSFC)

Measurement of Charge Distribution in Electron Beam Irradiated PMMA Using Electro-Optical Effect Yusuke Usui – Mushashi Institute of Technology

Plasma Phenomena Associated With Solar Array Discharges and Their Role in Scaling Coupon Test Results to a Full Panel Philip Leung – The Boeing Company

POSTER SESSION I

Materials Characterization at Utah State University: Facilities and Knowledgebase of Electronic Properties of Materials Applicable to Spacecraft Charging John Robert Dennison – Utah State University

Feedback on the Picup3d Experience and the Open Source Strategy Applied to a Spacecraft-Plasma Interaction Simulation Code Julien Forest – Swedish Institute of Space Physics & CETP

On-Orbit Daytime Solar Heating Effects: A Comparison of Ground Chamber Arcing **Results** Joel Galofaro – NASA Glenn Research Center (GRC)

SEE Program: Spacecraft Charging Technology Development Activities Billy Kauffman – NASA Space Environments and Effects (SEE) Program

Secondary Electron Emission Causing Potential Barriers Around Negatively Charged Spacecraft

Eloy Sasot Samplon – European Space Agency (ESA)

Investigation of Electrostatic Potential Barrier Near an Electron-Emitting Body Benoit Thiebault – European Space Agency (ESA)

Instrumentation for Studies of Electron Emission and Charging From Insulators Clint Thomson – Utah State University

AF-Geospace 2.0 Robert Hilmer – Air Force Research Laboratory (AFRL)

INTERACTIONS OF SPACECRAFT AND SYSTEMS WITH THE NATURAL AND INDUCED PLASMA ENVIRONMENT SESSION

A Review of Spacecraft Effects on Plasma Measurements Alain Hilgers – European Space Agency (ESA)

Observations of Vehicle Surface Charging in Dusty Plasma Aroh Barjatya – Utah State University

Spacecraft Charging in a Quasi-Static and Dynamic Plasma Environment and the Scaling Laws for ESD-Induced Current Transients Richard Briët – The Aerospace Corporation

Modeling of the Plasma Thruster Impact on Spacecraft Charging Sylvie Brosse – Alcatel Space Industries

The Viability of Using Weight-Saving Material for Future Long-Term Space Vehicles (i.e., Satellites) Nicola Burgess – Raytheon

Simulations of Solar Wind Plasma Flow Around a Simple Solar Sail Henry Garrett – NASA Jet Propulsion Laboratory (JPL)

High Voltage Solar Array for 400V Operation in LEO Plasma Environment Satoshi Hosoda – Kyushu Institute of Technology

High-Level Spacecraft Charging at Geosynchronous Altitudes: A Statistical Study Shu Lai – Air Force Research Laboratory (AFRL)

Degradation of High Voltage Solar Array Due to Arching in LEO Plasma Environment Teppei Okumura – Kyushu Institute of Technology

ECSS-E-20-06 Draft Standard on Spacecraft Charging: Environment-Induced Effects on the Electrostatic Behaviour of Space Systems David Rodgers – QinetiQ Modeling of the Photoelectron Sheath Around an Active Magnetospheric Spacecraft With PicUp3D Benoit Thiebault – European Space Agency (ESA)

Feasibility Study of an Experimental Platform With Active Plasma Emission for Japan Experimental Module Onboard ISS Hideyuki Usui – Kyoto University

Onset of Spacecraft Charging in Single and Double Maxwellian Plasmas in Space: A Pedagogical Review Shu Lai – Air Force Research Laboratory (AFRL)

Solar Array in Simulated Leo Plasma Environment Dr. Boris Vayner – NASA Glenn Research Center (GRC)

MATERIAL CHARACTERIZATIONS SESSION

Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging J.R. Dennison – Utah State University

Electron Emission Properties of Insulator Materials Pertinent to the *International Space Station* Clint Thomson – Utah State University

European Approach to Material Characterization for Plasma Interaction Analysis Marc Van Eesbeek – European Space Agency (ESA)

An Improved Method for Simulating the Charge of Dielectrics in a Charging Electron Environment Denis Payan – Centre National d'Etudes Spatiales (CNES)

Clear, Conductive, Transparent, Flexible Space Durable Composite Films for Electrostatic Charge Mitigation Kent Watson – National Institute of Aerospace

MODELS AND COMPUTER SIMULATIONS SESSION

An Educational Multimedia Presentation on the Introduction to Spacecraft Charging Elise Lin – DPL Science, Incorporated

NASCAP-2K – An Overview

Myron Mandell – Science Applications International Corporation (SAIC)

Validation of NASCAP-2K Spacecraft-Environment Interactions Calculations

Victoria Davis - Science Applications International Corporation (SAIC)

NASCAP-2K As a PIC Code

Myron Mandell - Science Applications International Corporation (SAIC)

Assessment and Control of Spacecraft Charging Risks on the *International Space Station* Steve Koontz – NASA Johnson Space Center (JSC)

ISS Plasma Interaction: Measurements and Modeling

Hagop Barsamian - The Boeing Company

Specification of *ISS* **Plasma Environment Variability** Joseph Minow – Jacobs Sverdrup

Electron Collection by *International Space Station* **Solar Arrays** Barbara Gardner – Science Applications International Corporation (SAIC)

The Electric Propulsion Interactions Code (EPIC) Yiangos Mikellides – Science Applications International Corporation (SAIC)

Effects of Large-Amplitude RF Emissions on OEDIPUS-C Floating Voltages James Laframboise – York University

SPARCS: An Advanced Software for Spacecraft Charging Analyses Sebastian Clerc – Alcatel Space Industries

Computer Simulation of Radiation Charging Processes in Spacecraft Materials Valery Mileev – Moscow State University

Design of a New Modular Spacecraft Plasma Interaction Modeling Software (SPIS) Jean-Francois Roussel – ONERA / DESP

Development of a Virtual Testing Laboratory for Spacecraft-Plasma Interactions Joseph Wang – Virginia Polytechnic Institute and State University

Features of Charging of Composite Configuration Spacecraft Charging in High Orbits Valery Mileev – Moscow State University

ENVIRONMENT SPECIFICATIONS SESSION

Representation of the Geosynchronous Plasma Environment for Spacecraft Charging Calculations

Victoria Davis - Science Applications International Corporation (SAIC)

An Empirical Low-Energy Ion Model of the Inner Magnetosphere

James Roeder - The Aerospace Corporation

Inner Radiation Belt Representation of the Energetic Electron Environment: Model and Data Synthesis Using the Salammbo Radiation Belt Transport Code and Los Alamos Geosynchronous and GPS Energetic Particle Data Reiner Friedel – Los Alamos National Laboratory (LANL)

Assimilative Forecasting of the Energetic Particle Environment Steve Naehr – Rice University

Operational Prediction and Specification of the Spacecraft Charging Environment Terrance Onsager – National Oceanic and Atmospheric Administration (NOAA)

The Flumic Electron Environment Model David Rodgers – QinetiQ

New NASA SEE LEO Spacecraft Charging Design Guidelines – How to Survive in LEO Rather than GEO Dale Ferguson – NASA Glenn Research Center (GRC)

POSTER SESSION II

Embedded-Probe Floating Potential Charge-Discharge Monitor Keith Balmain – University of Toronto

Wake Effects on Positively Charged Spacecraft in Flowing Tenuous Plasmas: Cluster Observations and Modeling Erik Engwall – Swedish Institute of Space Physics

Modeling of the Plasma Environment of a FEEP Micro Thruster with PICUP3D Simulation Code: Sample Results Julien Forest – European Space Research and Technology Center (ESA-ESTEC)

Carbon Nanofiber-Filled Materials for Charge Dissipation Ronald Jacobsen – Applied Sciences Incorporated

Comparison of Classical and Charge Storage Methods for Determining Conductivity of Thin Film Insulators Prasanna Swaminathan – Utah State University

Particle-In-Cell Simulations on Antenna Characteristics in Magnetized Plasma Hideyuki Usui – Kyoto University **An Educational Multimedia Presentation on the Introduction to Spacecraft Charging** Elise Lin – DPL Science, Incorporated

CURRENT COLLECTION AND PLASMA PROBES IN SPACE PLASMAS SESSION

Current Collection by a Segmented Langmuir Probe in the Ionosphere Plasma Elena Seran – CETP

Calibrating the Floating Potential Measurement Unit Charles Swenson – Utah State University

The Deflection Plate Analyzer: A Technique for Space Plasma Measurements Under Highly Disturbed Conditions Ken Wright – NASA MSFC National Space & Science Technology Center (NSSTC)

ON-ORBIT INVESTIGATIONS SESSION

Nearly Eighty Years of SOHO Observations – Some Highlights Paal Brekke – European Space Agency (ESA)

Space Weather Effects on SOHO and its Role as a Space Weather Watchdog Paal Brekke – European Space Agency (ESA)

In-Flight Anomalies Attributed to ESD's. Recent Cases and Trends Jean-Pierre Catani – Centre National d'Etudes Spatiales (CNES)

A Novel Spacecraft Charge Monitor for LEO

Luke Goembel – Goembel Instruments

Active Spacecraft Potential Control for Cluster Results from Three Years in Orbit Klaus Torkar – Austrian Academy of Sciences

On-Orbit Experiments and Research on Measuring the Spacecraft Charging

Nikolski Evgeny - Russian Aviation-Space Agency, Lavochkin Association

CONFERENCE PHOTOS

Group photo, silhouette of the attendees, and casual photos

9th SPACECRAFT CHARGING TECHNOLOGY CONFERENCE

The Japanese Aerospace Exploration Agency (JAXA) will host the 9th Spacecraft Charging Technology Conference in Tsukuba, Japan, in the spring of 2005