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Abstract

An electrically floating bare tether in LEO orbit may
serve as upper atmospheric probe. Ambient ions
bombard the negatively biased tether and liberate
secondary electrons, which accelerate through the same
voltage to form a magnetically guided planar e-beam
resulting in auroral effects at the E-layer. This beam is
free from the S/C charging and plasma interaction
problems of standard e-beams. The energy flux is weak
but varies accross the large beam cross section, allowing
continuous observation from the S/C. A brightness scan
of line-integrated emissions, that mix emitting altitudes
and tether points originating the electrons, is analysed.
The tether is magnetically dragged at nighttime
operation, when power supply and plasma contactor at
the S/C are off for electrical floating; power and
contactor are on at daytime for partial current reversal,
resulting in thrust. System requirements for keeping
average orbital height are discussed.

Introduction    

    Studies of auroral effects require information on
energy, spectrum, and pitch of precipitating electrons.
Natural auroras are random events, however. This
makes rocket in-situ observation a chancy affair.
Overflying satellites map luminosities but yield no
information on the electrons.

    On-board e-beam sources produce artificial auroras
making ground observation convenient. But beam-firing
affects S/C potential, the S/C being ground for the beam
source.

    Also, for a typical 1 A, KeV e-beam (diameter ∼ 10
m) the energy flux is about 100 times larger than the
flux in the intense Type-IV  aurora. This compensates
the thinness of the emission layer for the e-beam, 10 m
against 10 Km for auroral arcs. Intense beams produce
suprathermal electrons and plasma fluctuations near the
S/C, and distort the structure of the beam cross-section
by nonlinear plasma effects.

    Typical beam experiments thus end studying  beam
physics, and spacecraft charging, not auroral emissions.

The tether system

    A conductive tether, left uninsulated and floating, is
biased highly negative over most of its length. Ions
impacting the tether liberate secondary electrons, with a
yield (secondary electrons/ion) that may reach 20% at 1
KV  level. After acceleration by the tether-to-plasma
local voltage, electrons race down magnetic lines.

    This beam source is free of S/C charging problems
(no current flows at ends of tether). Also, the beam
cross-section is large ( ∼ 10 m × 20 Km), making  the
resulting energy flux intermediate between those of
Type I and Type-II auroras, well below the threshold for
beam-plasma effects.

    Brightness is then too low for ground observation, but
high for (continuous) observation from the S/C. Such
observation from the S/C is impracticable for the small
standard e-beam cross sections. The tether beam,
however, has one cross dimension ∼ 20 Km, the flux
varying from tether top to bottom. This would allow
determination of volume emission rates by tomographic
techniques.

    The low ion-level current makes the tether near
equipotential in its own frame. In that frame the
potential in the ionospheric plasma varies as (Fig. 1)

            dφI /dh = Em   (motionally induced field)

                  ⇒ φT - φI  = Em (h0 — h)

    The electron current  Ie ( h)  varies along the tether
and flows downwards. For  h < h0  the tether collects
electrons according to the OML law
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For  h > h0  ions are attracted and, after impact, leave as
neutrals, carrying electrons away. Electrons thus leak
out at the ion impact rate, again given by the OML law,
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enhanced by secondary emission, with a yield  ∼  γ1(φI -
φT),
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where  N   is the plasma density, and  p   is the cross
section perimeter.

    These equations, together with the floating conditions
Ie (0) = Ie (L) = 0,  determine  h0  and  Ie (h).

    Take an  Al,  L = 20 km,  p = 8 mm tether, with  γ1 ∼
0.2 / KV;  and oxygen ions with density  N = 3 × 1011 /
m3 (night time level at  350 Km,  and mean solar
activity). Also, take orbit inclination   i ∼ 35…  and use
the dipole approximation for the geomagnetic field,
giving an average  Em ≈ vsat Beq cosi  =  165 V / km

    We then find that  h0  is a few per cent of  L;  in what
follows we shall consider h0 ≈ 0. We also find a current
averaged over tether length,
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and an emitted current of secondary electrons  Is e c   ≈
0.128 A,  with vertical distribution of electron emission

                 dIsec / dh = 2.5 × h5/2Isec / L
7/2

The ohmic drop  L eI
~

 / σAc  is a few per cent of  EmL,

thus being negligible as assumed. Here  σ ≈ 3.5 × 107 /
Ω m  is the Al electrical conductivity, and  Ac  is the
conductive cross section area.

    The magnetic drag power is

                Wdrag(night) = EmL eI
~

 ≈ 0.944 kW

This  magnetic drag results in altitude loss. That loss
would be much greater during the day. A power source
would be needed to reverse the current and produce
thrust. That power would be supplied by solar panels.

    To estimate the power  We  required to keep an
average orbital altitude we set zero net drag-thrust at
day. The power voltage will shift down the zero bias (∼
zero current) point. Below (above) that point, current
will flow downwards (upwards), resulting in drag
(thrust). The drag power scales in a simple way with
both downwards current length and plasma density (Fig.
2)
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    To determine the thrust power,  Wthrust(day).  we solve
for  Ie(h  <  L - l).  The electron current level results in
ohmic effects here being important. Since  Ie  flows now
upwards we have

                  dφT/dh = - Ie/σAc.

We still have  dφI /dh = Em ,  but the current law has the
sign changed
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Finally we use boundary conditions

                  φT - φI = 0   (Ie ≈ 0)   at   h = L - l.

Setting the  day condition   Wthrust = Wdrag  the power is
determined by the equation

                  We = (φT - φI) Ie    at   h = 0.

    Take   Ac = 2.2  mm 2 (and   p = 8 mm as before). This
results in a cross section conductive layer 0.31 mm
thick, over a nonconductive circle of radius  0.96 mm.
For  L = 20 km,  the tether mass would be  ∼  175 kg

    Using  Nday = 10 12 m -3,  we obtain  l  ≈ 0.857 L  ≈
17.1 km. Also, current and voltage at the power source
in the S/C  (h = 0),  would be  Ie  =  10.6 A,  φT - φI  =
723 V, making a supply power  We ≈ 7.66 kw.  The
mass of the power-system mass (including the solar
panels) could be  ∼ 175 kg  too.

    We note that a fully conductive circle cross section of
p = 8 mm  perimeter  would make too heavy a tether.
Also, a conductive tape of thickness  0.2 mm  say,
would need too heavy a power system.

    A Hollow Cathode, Xe - contactor, switched on with
the power supply   could have a mass flow rate  ∼  2.5
kg / year / A,  and eject a  10.6 A  current under a  20-30
V bias  << Em (L - l).  The mass of 1-year HC system
(including tankage and plumbing), at  _ duty cycle,
would be  ∼   15 kg.

The tether e-beam

    Secondary electrons accelerate away from the tether
to energies  eEmh.  At the start of their race down field



3

lines the electrons would be uniformly distributed in
azimuth  ϕ  (Fig. 3).

    The pitch angle  θp  distribution is nearly uniform on
the range  [I < θp < π / 2],  and is peaked at  I.  The
magnetic dip angle varies in orbit within the range  0 < I
< Imax  ∼ tan-1 (2 tan i).

    With a e-beam half-width  ∼  electron gyroradius at
energy  eEmh   the downward particle flux would be
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For the energy flux we have

                      Φε∞ ≡ Φ∞ (h) × eEmh

         ≈ (h/L)2 × 3.67 × erg/cm2 s   (≤ Type II auroras).

We have set  I = 45…,  and used  Ω eq  = 5.3 ×  106 s-1,
which is the electron gyrofrequency at the magnetic
equator).

    Racing secondary electrons are slowed down by
molecules in inelastic collisions that produce ionization
and excitation (followed by prompt photon emission),
with one ionization on average for every  35 eV ( ≡ εi)
of energy lost by the secondary electrons.

    The ionization cross section for  ε  >  30 eV  is

                 σi ≈ σ* × g(ε / ε*),           σ* ≈ 10-15 cm2

                ε* ≈ 24 eV,         g(u) ≡ (u - 1) ln u / u2.

The electrons lose energy with altitude at a rate

                  sinI cosθp × dε /dz = εi n(z) σi (ε)

with the  E -layer atmospheric density (height  z
measured from  95 km above the Earth)

                         n (z) ≈ 1031 / z3.

    For a rough simplification, we ignore pitch evolution
and distribution, using  an average  cosθp  ≡ cosI × 2 / π,
from the initial   θp   distribution. Also, beam spread
may be ignored

                             Φ(z,  h)  ≈  Φ∞ (h).

   The energy  ε(z, h)  of electrons reaching height  z  ,
after being emitted from a tether point at distance  h
from the top (and at an altitude  ∼ z∞)  is

                 
















∞

−=∫
2

1

2

12
*

*
/

*
/ )( zz

z

h
m

eE

ug

du
ε

εε
,

where

                
Isin

km

Isin

iz
2

1514

2

*
31

10

*
2*

≈≡
σ

ε

πε

    Steady-state auroral emissions occur at  z  ∼ 25-50
km, i.e.,  120- 140 km above the Earth surface. (The
lifetime of excited states  ∼ 10-7 s  is much less than the
beam dwell time  ∼ 10 m / 7.5 km s-1 ∼ 10-3 s)

    Volumetric emission rate of photon-type considered
are then given by

            [ ]),()()(),( hz
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The emission brightness for an emission depth  s,  along
any specific line of sight  (relating  s,  z,  and  h) is

                  dsemnRb ∫−= &610

(b   in Rayleigh units,   emission rate in cgs units).

    Take a simple case:  The  N2
+  first negative band

(427.8 nm),  with  σexc  ∼  1.75 σi,  and observation from
the S/C,  with a line of sight at angle  ψ   from  B-field
lines (Fig. 4),  making

                 ds ≈ dz / sinI,            h sin2I ≈ 2ψ (z∞ - z),

               [ψmax  ≈  (L sin2I) / 2z∞,       a few degrees],

                          ε (z, h) → ε [z, h(z)].

There is no ionization below the energy  ε i.  This
implies no ionization above some height  zmax,

                 ε [zmax, h(zmax)] = εi      ⇒  zmax ≈ z∞

(emission energy being too low above  zmax),  and below
some height  zmin,

                ε [zmin, h(zmin)] = εi      ⇒  zmin << z∞

(energy having dropped too low below  zmin). We find,
in particular,

            zmin  ≈ 32.7 km    at  ψ  = ψ max,         I = 45…
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We finally arrive at
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The integrand above peaks at  z  <<  z∞,  ε ∼ εi.  Take  ψ
=  ψ max,  I  =  45…,   g  ∼   _ gmax  ≈  0.13. This yields

                    bR(427.8 nm) ∼ 105

Conclusions

*   An electrically floating bare tether in LEO may serve
as upper atmospheric probe.

Power supply and plasma contactor at the S/C  may
keep (or modify) its orbit indefinitely.

A full system mass  ∼  400 kg  possible if tether cross
section conductive on thin outer layer

*   The tether  e-beam is free from the S/C charging and
plasma interaction problems of standard beams.

Beam energy flux between Type I and II auroras

Flux too low to allow ground observation (brightness  ∼
1 -10 Rayleighs)

*   (Long, continuous)  observation from  S/C  possible
(satellite motion very slow compared to velocity of
secondary electrons), with brightness  ∼  104 - 105

Rayleighs.

Determination of volume emission rates possible by
tomographic techniques

Probe could make significant contributions to
knowledge of upper atmospheric kinetics

It may uncover aeronomic mechanisms of importance in
the thermosphere.
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