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Abstract

This paper reports an anomaly on orbit of the solar array temperature measuring attributed to electrical ground
floating resulted from LEO plasma environment for Chinese Meteorological Satellite. In order to determine the reason
and repeat the anomaly on orbit, several simulating tests had been done in the ground. By analyzed the environments
and its effects on orbit especially plasma effects on LEO spacecraft, the negative floating potential attributed to plasma
was concerned. The potential would make the reference zero level of telemeter down to about -1V in the ground loop.
Testing on simulating electrical ground floating for telethermomter repeated the anomaly and the data accorded with

space. The results have being used for engineering improvement.
Introduction

The expectations to operating life and reliability of spacecraft have become increasing along with various
spacecraft being launched. As we know, the natural space environments are characterized by many complex and
specific phenomena that will be harmful to spacecraft. The effects of these phenomena will impact spacecraft design,
development, and operations, thus understanding the space environment effects and the mechanism of spacecraft
interaction with space environments are essential for spacecraft to accomplish overall mission in space’.

Now, more and more new spacecraft being launched are placed in the region between 100 and 1000km termed
Low Earth Orbit (LEO). These spacecraft are subjected to a variety of interactions with the orbital environment and
notables among these are effects related to the plasma environment. During times of geomagnetic storms in the
Geosynchronous(GEO), the plasma environment has charged spacecraft surface to a high level voltages, which may
result in spacecraft systems anomalies. However, the LEO plasma is typically of much lower energy and higher density.
Although the LEO spacecraft can not be charged to a high level voltages by plasma environment such as it is in GEO,
the effects related to plasma environment are various, particular in floating potential, parasitic current losses, ion
sputtering, and others. These effects that related to LEO plasma environment would make space science experiment and
data detection difficult if they were not considered sufficiently in the engineering design®.

Been launched in 1999 and was placed in a polar orbit, Chinese Weather Satellite are working well up to now. An
anomaly event appeared after the satellite operating on orbit soon, according to the data from telethermomter could not
estimate the true temperature of solar panel correctly. The data indicated that the temperature of solar panel during
sunlight lower than the temperature of solar panel during it was in shadow, although the solar array output power was
normal. Before launched, the satellite had been passed a series of strict ground testing items, and any anomaly did not
experienced. The preparatory anomaly analysis addressed the reasons to the electrical ground loop damage during the
satellite launching and starting to work on orbit or the effects caused by LEO plasma environment, especially the later
were taken into account first. In order to determine the reason resulting in the anomaly and repeat the phenomena on
orbit, charging/discharging experiments, electrical ground floating experiments had been done in laboratory. Results of

grounding experiment indicated that the absolute value of measuring data accord with the data of orbit when the solar
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panel sample during sunlight and shadow if make the electrical ground of temperature measuring circuit floating below
the absolute ground (it means the structure ground in satellite) —1.5V. In despite of other factors are being considered,
the anomaly that attributed to negative floating of solar panel ground induced by LEO plasma environment is a
reasonable explanation, and the improvements against it have been adopted and applied to others satellite.

The purpose of this paper was to report the experiments and explanations related to the anomaly, and make the

spacecraft engineers to pay more attention to the LEO plasma environment effects on spacecraft.

LEO Plasma Environment and Floating Potential

The process of spacecraft interaction with LEO plasma environment is complex, the effects related to plasma
environment involve many aspects, such as surface charging, floating potential, parasitic current losses, ion sputtering,
arcing, contaminants accelerating, and many research works have been done in these fields. This paper will concentrate

on discussing the floating potential, which is related to LEO plasma environment and how it make effect on spacecraft.

LEO plasma environment

Low Earth Orbit (LEO) is an orbit with altitude in the range from 100 to 1000km. The characteristics of LEO
plasma environment are their lower energy and higher density, the electron/ion density is about 10*—10%cm’, the
electron impact energy is about 0.3eV, and the ion impact energy is 5eV. In LEO plasma, the electrons and ions
approximately have equal number density, it is equivalent to supply a neutral current in the surface charging process, so
the LEO spacecraft couldn’t be charged to a high level voltages in this plasma environment.

On the other hand, in LEO plasma, because of its much higher density, the current flux of reached spacecraft
surface much larger than that of the secondary currents caused by secondary electron emission, back scattering and
photoelectron emission. The LEO spacecraft will be charged to high potentials when it passes through the polar region

and encounters an auroral electron environment?.

Negative floating potential of LEO spacecraft

A spacecraft in the LEO plasma is subject to a current flux of the ions and electrons striking its surface. Although
the electron current is equal to ion current in a plasma, in LEO, the spacecraft’s orbital velocity, v, is larger than the ion
thermal, v,, but less than the electron thermal velocity, v,,. As a result, the electrons will be able to reach all surfaces of
the spacecraft but the ions can't. Since the plasma is quasi-neutral, the spacecraft will charge to a negative potential, V,
when it facing the ram of the plasma flow, until the electrons are limited by an electrostatic repulsion.

As mentioned above, if secondary current is ignored, an equilibrium potential on spacecraft surface is established
when the electron current, I, is balanced by an equal ion current, I, The equilibrium potential is floating potential, V;

relative to the LEO plasma. I, I; is given by

I=enyv, A, (D

1=(1/4) en,v A .exp(eV/KT,) 2)

Where V is the potential of the spacecraft, measured relative to the plasma potential, A;, A, is ion and electron collection
area respectively, e is elementary charge, n;, n, is ion and electron density respectively, T, is electron temperature and k

is Boltzmann’s constant. When I.=I;, the floating potential is given by
V¢=-(kT./e)In(4nyv,A/ n.v,A)  (3)

For a solar array, considering the case when the solar panel is normal to the plasma flow, the collecting areas of ion and

electron will be essentially equal, i.e. A=A,, since v, >> v,, so the array potential will float about -1V from equation (3).



For an actual spacecraft, this means that if there is a floating potential between the solar array and spacecraft structures
which typically provide the electrical ground, a floating ground is exist. In general, a floating ground will makes some

parameters detecting on orbit difficult.

Experiments and Procedures

The purpose of the experiments is to discover what’s the reason to induce the anomaly of solar panel temperature
measuring by ground simulating tests. The sample of solar array used in the experiments has same electrical state and
structures as the actual solar array on orbit, the size of sample is 200mm X 300mm X 20mm, the solar panel substrate
is carbon fiber aluminum honeycomb, the top side is solar cells, and the back side are wiring circuit and coating with
white paint for thermal controlling. Two temperature sensors are placed below the solar cells for detecting the

temperature of solar panel.

Solar array charging experiment

Testing was done in the SCF-900, the combined spacecraft charging ground simulation facility at Lanzhou
Institute of Physics*. The test chamber offers a cylindrical volume 0.9m in diameter by 1.6m long. The background
pressure in chamber is 2X 10“*Pa. The facility can simulate plasma environment, geomagnetic storms charging
environment and auroral electron environment by a hollow cathode discharge plasma source and two dispersing
electron guns. During the testing, the solar array sample is placed in the middle of the chamber, the back side of solar
panel is exposure to the plasma source and electron guns, and the side with solar cells facing a sun simulator. The
distance between the solar array sample and sun simulator or plasma source/electron guns is approximately 0.6m. The

experiment configuration is illustrated as figure 1.
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Figure 1. Configuration of solar array charging experiment

Electrostatic discharging test

The electrostatic discharging (ESD) evaluating test system for spacecraft electronics is used for observing and
surveying the variation of temperature sensor’s temperature coefficient’. Two types of ESD simulators, a arc ESD
simulator and a sphere-flat capacitor ESD simulator were used in the test, the ESD pulses were injected to the circuit
loop of temperature measuring by the methods of single point injection, radiation field, and capacitance coupling

injection. The output data were recorded when the ESD voltages changed from low level to high level.

Electrical ground floating experiment

Since the electrical ground of solar panel is connected with temperature measuring circuit and conducted to
spacecraft ground by a 68kQ resistance. Considering some unexpected errors are possible on orbit, the negative floating

potential of solar panel may effect the telemetering data. In order to simulate the effect of negative floating potential, an



electrical ground floating experiment was designed as figure 2. For testing convenience, a dry battery was in series to
the circuit loop and made the solar panel electrical ground floating below the spacecraft ground —1.5V. The difference

between the experiment circuit and the actual circuit on orbit only is —1.5V voltage source in series to the ground loop.
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Figure 2. Circuit diagram of electrical ground floating experiment

Results and Discussion

Solar array charging experiment

The output voltages corresponding to the solar array temperature under sunlight and shadow were measured for
three cases, the first, no electrons and plasma environment in chamber, secondly, charged the solar back side to
approximately 400V voltages, and the third, the solar array immersed the simulating plasma environment. The results
are shown in the figure 3 and presented in graphical form in curves 1, 2, and 3 respectively.

Shadow —— 1
lightin

thermistor output
voltage (V)

0 3 6 9 2 15 18 21 24

Light Exposure Time(min)

Figure 3. The results of solar array charging experiment
As showing in figure 3, the output data were consistent under three testing conditions and any anomaly was not
appeared. The experiment results indicate that the plasma environment and surface charging can’t induced the anomaly

of solar array temperature measuring if the electrical ground floating of measuring circuit loop is absence.
Electrostatic discharging test

Under the electrostatic discharging testing, the output data of solar panel temperature measuring voltammeter was

overflow during a electrostatic discharging pulse was injected in the wiring circuit, and the data were normal when the



ESD pulse coupling stopped. By the testing, it is clear that space electrostatic discharge can’t change the negative
temperature coefficient of temperature sensors to the positive coefficient, and the reason which the anomaly attributed

to the reverse of temperature sensor’s temperature coefficient induced by ESD can be left out of account.
Electrical ground floating experiment

The experiment results are showed in figure 4 (in solid line). Obviously, the result difference with other
experiments is the value of voltage less than zero voltage. In the testing, although the temperature sensor presented a
negative temperature coefficient as like it in other tests, the absolute value of measuring voltage present a positive
temperature coefficient (line of dashes in figure 4). If the negative symbol was unconsidered by the telemetering device,
this means that the solar panel temperature under sunlight is lower than it is in shadow according to the test data, and

the phenomenon is agreement with the anomaly on orbit.
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Figure 4. Electrical ground floating experiment data

From the test results, if the ground loop of the measuring circuit was changed or the telemetering circuit was not
read the negative value correctly, the negative floating potential of solar array induced by LEO plasma environment
may affect the correct distinguish of telemetering data. The explanation that the anomaly attributed to the negative

floating potential was reasonable and it should be taken into account.
Conclusions

It is possible for a spacecraft in Low Earth Orbit to have significant interactions with ambient plasma environment.
Understanding the plasma environment and its effects on spacecraft are important for spacecraft design, development,
and operation.

The experiments and theoretical analysis results indicate that the surface charging and electrostatic discharge pulse
of solar array in LEO satellite don’t effect the characteristic temperature coefficient of solar panel temperature sensors.
It is possible that telemetering data of solar array temperature will give a wrong explanation due to the negative floating
potential induced by the LEO plasma. Careful attention must be given to the plasma environment effects during
spacecraft design. In order to do this, spacecraft ground wiring loop should be improved and optimized, in addition, the
output level of telemeter should be increased from 0~5V to 0~12V, and the output voltage value below 1V should be

avoid as far as possible for some important measuring data.
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