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Abstract
Large-scale geostationary satellite, ETS-VIII, is

planned to be launched in 2003.  As solar array panel
with high voltage (100V) bus is introduced to ETS-VIII,
the effect of spacecraft charging due to space plasma
should be considered.  Therefore, we conducted the
charging analysis of ETS-VIII by using NASCAP/GEO.
The maximum potential difference of about 2.9kV on the
solar array panel of ETS-VIII was obtained in the worst
space environment condition from the analysis.
Although the potential of 2.9kV is possible to cause
discharge, the influence to the satellite is thought to be
small.

1. INTRODUCTION
Engineering Test Satellite VIII (ETS-VIII) of Japan

will be launched by H-IIA rocket from Tanegashima
Space Center of NASDA in 2003 [1].  Figure 1 shows
the overview of ETS-VIII in orbit.  In ETS-VIII, new
technologies such as high voltage (100V) bus for high
power supply and large-scale deployable reflector (LDR)
are introduced to establish and verify the technology for
the future large-scale spacecraft systems.  Also, 25mN
class ion thrusters are equipped on ETS-VIII to keep the
north-south position.  Although these subsystems and
the main system are probable to be exposed to severe
space environment, the systems must function normally
during mission life.

Space plasma causes “spacecraft charging” to
satellite.  The spacecraft charging is possible to induce
ESD (electrostatic discharge) damage to the satellite.
Therefore the possibility should be verified at the design
stage.  Namely, charging analysis of the spacecraft

should be carried out.
NASCAP (NASA Charging Analysis Program)

/GEO is popular and useful tool to analyse the spacecraft
charging [for example, 2, 3].  We also used it to
evaluate the possibility of the occurrence of ESD on
ETS-VIII in the severe space environment.

In this paper we will describe and discuss the results
of the analysis.

Fig.1 Overview of ETS-VIII in orbit

2. CONDITION OF NASCAP/GEO ANALYSIS
NASCAP/GEO analysis was conducted in the flow

shown in Fig.2.

STEP 1: Definition of Model Shape
As the mesh space of NASCAP is limited to

17x17x33, we divided the satellite surfaces to the mesh
as shown in Fig.3.  In this model, we set the length of
one side of the mesh as 2.5m from the limitation of the



mesh space.  In this figure, the sun is in +X direction.
Two SAP’s (Solar Array Panels) are always faced to the
sun.

In Fig.3, the surface materials for the analysis are
also shown.  The surface materials are set as follows;

・ CG (Cover Glass); the front surface of the SAP.
・ CFRP (Carbon Fiber Reinforced Plastics); the

rear surface of the SAP and the boom.
・ ITO (Indium Tin-Oxide); Coated on OSR

(Optical Solar Reflector) used for the south and
north surfaces of the body of ETS-VIII.

・ BK (Black Kapton); all surfaces except for the
south and north surfaces of the body.

・ GOLD (mesh of Gold); LDR.

The SAP is PLATE model.  The front surface CG
is always in sunlit condition and the rear surface is in
shadow.  As the LDR has the mesh structure knitted by
fine strings made of gold, we defined it with PLATE
model of MESH-ANTENNA made of GOLD.  For the
booms between the SAP and the body and between the
SAP and the LDR, we used the rod-type BOOM.  The
body of the satellite is constructed by the cubic blocks of
RECTAN.

STEP 2: Definition of Material properties
It is important to describe the parameter of the

surface material precisely for valuable analysis.  Table
1 shows the material parameters used for the charging
analysis of ETS-VIII.  As understood from this table,
only CG is dealt with insulator and the other surface
materials are conductive materials.  As the conductivity
of the insulator changes with temperature and it affects
the charging characteristics, we used the conductivity of
CG of 1.59x10-13Ω-1m-1 in sunlit condition (about 50oC)
and 1x10-16Ω-1m-1 in shadow (about –170oC).

STEP 3: Definition of Plasma Environment
We defined the plasma parameters as double

Maxwell distribution as shown in Table 2.  This data of
plasma environment is selected from the worst case data
obtained by SCATHA satellite [4].

STEP 4: Definition of Optional parameters
In this step, the parameters such as the direction of

the sun, the transmittance of the mesh antenna, the solar
light intensity at the surface and the time step for

calculation are set.
As the fine strings made of gold are used for LDR

of ETS-VIII, the greater part of solar light is transmitted
through the LDR.  We defined the transmittance of
solar light of the LDR as 0.73.

STEP 5:Calculation of Current Incident on Surface of
Satellite
STEP 6: Calculation of Surface Potential

In these steps, the currents incident on the surface of
the satellite at one time step and the surface potential at
each mesh are calculated.  And at next time step, the
same calculations are repeated.

Definition of Model Shape

Definition of Material Parameters

Definition of Plasma Environment

Definition of Optional Parameters

Calculation of Current Incident on Surface of Satellite
Time Step

Calculation of Surface Potential

Fig.2 Flow chart of NASCAP/GEO analysis

Fig. 3 Shape and surface materials of ETS-VIII for
NASCAP/GEO analysis
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Table 1 Material parameters used for NASCAP/GEO charging analysis
Parameter Unit CG BK ITO CFRP GOLD

Relative Dielectric Constant 7.4 3.5 1.0 4.3 1.0
Thickness m 1.0x10-4 2.54x10-5 1.0x10-6 2x10-4 4x10-7

Bulk Conductivity Ω-1m-1 *1.59x10-13

**1.0x10-16
-1 -1 -1 -1

Atomic Number amu 18.7 4.5 24.4 5 42

Maximum Secondary Electron Yield for
Impact Electron (δmax)

10 0.93 1.4 2.1 1.4

Primary Electron Energy atδmax keV 0.35 0.28 0.8 0.15 0.8

Range Parameter 1 Å -1 180 -1 -1 -1

Range Parameter 2 0 0.45 0 0 0

Range Parameter 3 Å 5.73 312 7.3 1.7 10.2
Range Parameter 4 41.2 1.75 55.5 1.77 96
Secondary Electron Yield Due to Impact
of 1keV Proton

0.455 0.455 0.49 0.455 0.413

Proton Energy at Maximum Secondary
Electron Yield

keV 140 80 123 140 135

Photoelectron Current Density Due to
Normally Incident Sunlight

A/cm2 1.5x10-5 7.2x10-6 1.5x10-5 4x10-6 1x10-5

Surface Resistivity Ω/cm2 2.5x1016 -1 -1 -1 -1

*:in sunlit condition, **: in shadow

Table 2 Plasma parameters in double Maxwell
distribution of space plasma environment

Energy
(keV)

Density
(cm-3)

Low energy 0.4 0.2Electron
High energy 27.5 1.2
Low energy 0.2 0.6Ion

(Proton) High energy 28.0 1.3

3. ANALYTICAL RESULTS
3.1 Quasi-static Analysis

We describe mainly the time dependence of the
surface potentials of the insulating CG’s on the satellite
in the several positions in geostationary orbit.  The CG
on the SAP closest to the body is named as CG1 and the
CG on the SAP farthest from the body is as CG4.

Our NASCAP analysis was done in only case of the
vernal or autumnal equinox.

Figure 4 to Figure 7 show the potential histories of
the conductive body and CG’s on the SAP at four
positions in orbit as follows.

(1) At dawn (local time, LT, 6:00)
(2) At noon (LT 12:00)
(3) At midnight (eclipse, LT 0:00)
(4) At exit out of eclipse (LT 0:36)

(1) At LT 6:00 (Fig.4)
As the sunlight incident on the LDR is small, the

potential of the body gets negative largely, about –3.7kV.
The potential difference between the body and CG on the

SAP becomes large apart from the body.  Namely, the
maximum potential difference is about 1.2kV between
CG4 and the body.

However, sunlight casts on the actual LDR because
the shape of the LDR is not plate and recessed as seen in
Fig.1.  Therefore, the potential difference is thought to
be much smaller.
(2) At LT 12:00 (Fig.5)

As the photoemission current from LDR is very
large, the absolute potential of the body becomes very
close to the space plasma potential.  And the charge-up
of each CG is much low.
(3) At LT 0:00 (Fig.6)

Figure 6(a) shows the time history of the absolute
potential after entering in eclipse.  And Fig.6(b) shows
the potential distribution on the surfaces of ETS-VIII at
the time longer than 3,000sec after entering in eclipse.
The absolute potential gets saturated in about 2,500sec
and the potential of the body is about –9kV.  Like the
case of (1), dawn, the potential difference on CG4 is the
largest among the four CG’s on the SAP and the value is
about 2.9kV.
(4) LT 0:36 (Fig.7)

In this case, the incident angle of the sunlight is
about 9 degree from the +Z axis.  Therefore the sunlight
fully casts on the LDR and the enough photoemission
current from the LDR keeps the potential of the satellite
close to 0V.



In orbit, the shadow of the truss of the LDR casts on
the SAP at dawn.  To simulate this situation, we
conducted the analysis of the case which shadow only
casts on CG1 of the SAP.  Figure 8 shows the time
history of the absolute potential in that case.
Comparing with Fig.4, the potential on the CG1 becomes
close to that of the body.  The potential difference
between CG1 and CG2 is about 500V.  This shows that
one string of the solar cells has the possibility to get the
potential difference of about 500V to the shadowed
string.
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Fig.4 Potentials at LT 6:00
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Fig.5 Potentials at LT 12:00
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 (a) Potentials at LT 0:00

(b) Potential distribution on ETS-VIII at LT 0:00
Fig.6 Potentials at LT 0:00
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Fig.7 Potentials at LT 0:36
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Fig.8 Potentials in case of CG1 in shadow

3.3 Transient Analysis
We conducted the transient analysis of ETS-VIII by

connecting the quasi-static analysis in eclipse with that at
dawn in order to predict the potential change before and
after eclipse.

Figure 9(a) shows the time profile of the absolute
potential and Fig.9(b) shows the potential difference
between the body and the CG4.

In eclipse, the maximum potential difference
between the CG4 and the body is about 2.9kV as
described above.  At the time getting out of the eclipse,
the absolute potential of the body drifts to near 0V of the
space plasma potential.  On the other hand, the absolute
potentials of CG’s are 2.9kV biased positively to the
space plasma at that time.  After that, the potentials
reached to near 0V due to the effect of photoemission.

From these results, the situation of electrostatic
charging on ETS-VIII is illustrated in Fig.10
schematically.
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Fig.9 Potential profile at time getting out of eclipse

(a) ETS-VIII in orbit
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(b) Change of potential difference on ETS-VIII
Fig.10 Charging on ETS-VIII

4. DISCUSSION
NASCAP/GEO analyses of satellite have been done

by many researchers [2,3].  The results are,

1) In eclipse, the satellite’s conductive body gets
charged up to large negative potential.  And at the
time getting out of the eclipse it becomes to near 0V
immediately.

2) The potential difference between the cover glass on
the solar array panel and the conductive body is the
order of kV.

Therefore the results of our NASCAP/GEO analysis
are reasonable.

From the analysis, discharge is possible to occur on
the SAP in eclipse.  In this case, the potential difference
of 2.9kV between the surface of the cover glass and the
conductive CFRP of the same potential with the
conductive body is possible to cause surface discharge
along the side surface of the cover glass.  As if the
discharge occurs, the discharge energy is thought to be
small, because the area of one cover glass is much
smaller than the area of one CG used in NASCAP/GEO
analysis.  Therefore the discharge energy is not enough
to melt and disconnect silver interconnector of the solar
cell.  It is also thought to have no energy to puncture
Kapton film covering the CFRP substrate.  Moreover,
as the countermeasure to its possibility, silicone adhesive,
RTV, fills between the solar cells of ETS-VIII to prevent
triggering discharge.

It is emphasized that arc discharge is caused by the
occurrence of the plasma due to triggering discharge on
the cover glass in the case of the voltage difference of
100V between the neighboring strings of the cells [2].
In ETS-VIII satellite, the maximum voltage difference
between the strings is designed to be lower than 60V,
that is, the probability of the discharge is very low [5].

Also as mentioned above, RTV is filled between the
cells.

5. CONCLUSION
We carried out the charging analysis of ETS-VIII of

Japan by means of NASCAP/GEO in the severe space
plasma environment.  From this analysis, the followings
are obtained.
1) Maximum potential difference of about 2.9kV

appeared between the surface of the cover glass of
the solar cell and the conductive body of the
satellite.

2) Although the potential of 2.9kV is possible to cause
discharge, the influence to the satellite is thought to
be small.
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