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Abstract:  The NASA Charging Analyzer Program
(NASCAP) spacecraft charging software developed by
Maxwell Technologies has been widely used for the past
fifteen to twenty years in satellite design and investigation
of spacecraft charging related anomalies.  NASCAP/GEO,
the version used for geostationary orbiting satellites,
solves the Poisson-Vlasov system for currents and
densities taking into account the limited speed and
memory of computer systems standard for the day.  In
addition, use of this charging model requires individual
input files that are not readily transported into the various
families of charging codes to facilitate comparison of
results by the user.

This paper presents comparison of spacecraft charging
results obtained for a hypothetical satellite using the
current versions of NASCAP/GEO, SEE Handbook, and
NASCAP 2K/GEO.  The model satellite is constructed of
materials typically used for building geosynchronous
satellites.  Comparison of the codes is accomplished by
using the same hypothetical satellite model in all three
charging codes.  Differences and similarities of the
resulting output for each of the three codes will be
presented, along with a discussion of the computational
efficiency and ease of use for each of the codes.

1.0 Introduction

For over twenty years, the NASA / Air Force Charging
Analyzer Program (NASCAP) has been one of the
primary tools available to scientists and engineers for
predicting the charging of spacecraft surfaces at
geosynchronous altitudes.  Because of its validation using
flight data and long history of acceptance by the
spacecraft charging community, it is the yardstick to
which two new charging programs will be compared.

The release of the Space Environments and Effects (SEE)
Handbook charging code, along with the recent
development of NASCAP 2K/GEO, are two significant
new contributions to the suite of charging analysis
programs available to the spacecraft charging analyst.
The SEE Handbook was written for multi-platform usage

using a web browser as the computer interface.  The SEE
Handbook uses a simplified charging model and
incorporates single and multiple material routines for
geosynchronous and polar orbits.  In addition, software is
included to estimate the impact of energetic particles on
bulk charging of dielectric materials.  NASCAP 2K is the
NASA and Air Force charging codes of the future using a
highly developed boundary element method of solving for
the correct physical environments.  It also incorporates a
user-friendly three-dimensional object tool kit for building
complex satellite models.

This paper will compare and contrast the NASCAP
program with two new programs:  SEE Interactive
Charging Handbook and NASCAP 2K/GEO (beta
release).  Each program will be discussed including the
mathematics used to calculate results.  For ease of
reading, the paper is divided in three sections
corresponding to the three programs.  Each program will
be used to evaluate a hypothetical satellite design.
Comparison of the results will take place in a further
section.

2.0 NASCAP/GEO Model Description

NASCAP development began in the mid- to late- 1970s.
In depth discussions of its capabilities can be found in
[Katz, et al., 1978].  NASCAP was validated by
comparing data to that gathered by the SCATHA
(Spacecraft Charging AT High Altitude) (P78-2)
[Stannard, et al., 1982].  Spacecraft are modeled in
NASCAP in terms of thin booms, parallelepipeds,
trapezoids, or flat plates [Mandell, et al., 1984].  The
resulting geometrical object must fit within a 16 x 16 x 32
grid.  This results in a maximum resolution of 1/32 of the
object length.  This limitation can be prohibitive when
trying to analyze charging effects on small scientific
payloads mounted on large geostationary satellites.  The
object is limited to no more than 1250 surfaces and a
maximum of 15 different materials and 15 distinct
electrical conductors.  These conductors can be connected
with either a fixed bias or by capacitive coupling
[Stannard, et al., 1982].  It is up to the user to correctly
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implement the placement of each object, in relation to
other building block and in terms of the coding language.
For a beginner, defining the model can be the most
frustrating part.  Time and experience is needed to become
proficient.

Figures 1 and 2 show the hypothetical model as it was
written in NASCAP/GEO.

Figure 1.  Solar array view of the hypothetical
NASCAP/GEO model.

A simple model was specifically chosen so that direct
comparisons for all three models could be accomplished.
Here bkap is black Kapton®.  This is not a predefined
material for NASCAP/GEO.  However, defining a
material is accomplished in the same file as with the
model definition and is three lines of input.  Tefl is
Teflon®.  Sio2 is silicon oxide which corresponds to OSR
used in the other codes.  Kapt is Kapton®.  Sola is a
NASCAP defined material used on solar arrays.  Npaint is
a non-conductive paint.  A cube covered in the non-
conductive paint was used to represent the dish antenna.
There is no “dish” in NASCAP and as such, for a one cell
wide antenna a rectangle had to be used.

The 90% worst case environment as given in Purvis, et al.,
[1984] and shown in Table 1 was used for the charging
runs in this paper.  The charging time used with in
NASCAP/GEO is on the order of 6700 seconds.  It took
the program one hour and thirty minutes to run on an
antiquated Sun Sparc.

Temperature (keV) Density (cm-3)
Ions 29.5 .236
Electrons 12 1.12
Table 1.  90% worst case environment for
geosynchronous orbits used for all charging runs as
defined in Purvis, et al., [1984].

Figure 2.  View of hypothetical satellite in
NASCAP/GEO highlighting the eclipse side view.

The net electrical currents to the spacecraft surface are
calculated from the various charged particle fluxes
(including backscattered particles, secondary electrons,
and photoelectrons).  Over an interval of time, these
currents cause the accumulation of charge.  This resultant
surface charge distribution is used to calculate the surface
potentials and fields on the object.

NASCAP utilizes a finite element method to calculate the
potential in three-dimensions around the object. A
conjugate gradient method is used to solve Poisson's
equation to determine the surface potentials [Katz, et al.,
1977].

3.0 SEE Handbook Model Description

The Spacecraft Charging Interactive Handbook (referred
herein as the SEE Handbook) was developed by SAIC
(formerly Maxwell Technologies Systems Division) for
the NASA Space Environments and Effects Program
(SEE Program) Office at the George C. Marshall Space
Flight Center (http://see.msfc.nasa.gov/).  The purpose of
the Handbook is to provide a compilation of the most up-
to-date information on spacecraft charging as well as
updated design guidelines.  A web browser-based model,
it is intended for spacecraft designers and spacecraft
charging researchers. [Maxwell, 1998]  The SEE
Handbook provides an update to charging guidelines
contained in Purvis, et al. [1984] and interactive
spacecraft charging calculation tools for initial assessment
of spacecraft design.  These tools include calculations for
both surface and deep dielectric charging. [Gardner, et al.]
The hypothetical model written with the SEE Handbook
can be seen in Figure 3.  Charging time was 5000 seconds
with timesteps of ten.  It took less than two minutes for
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this program to complete on a 486/32 MB of RAM
personal computer.

Figure 3.  View of SEE Handbook hypothetical satellite
highlighting the solar cells view.

4.0 NASCAP 2K/GEO Model Description

NASCAP 2K/GEO is a model now under development by
SAIC (formerly Maxwell Technologies Systems
Division).  It is the natural counterpart of the SEE
Handbook and a complete overhaul of NASCAP/GEO.
NASCAP 2K/GEO uses the boundary element method
(BEM) to solve the spacecraft surface charging algorithms
by using Green’s function.  Using Green’s function allows
the ability to construct equations with electric fields on all
elements.  Also, Green’s function is able to relate
potentials and field due to sheet of charge.

Figure 4.  View of hypothetical satellite in NASCA
2K/GEO highlighting the solar cell view.

The modeling capabilities of NASCAP 2K/GEO are easy
for the user to comprehend, while providing enhanced
geometrical (such as the allowance of curved surfaces)
and field solution sophistication.  Figures 4 and 5 show
the same model as in Figures 1 and 2, built in NASCAP
2K/GEO.  NASCAP 2K/GEO utilizes a screen driven
JAVA interface.  There is no size limitation to the
spacecraft (recall the 16 x 16 x 32 grid size for
NASCAP/GEO).  There is a three-dimensional interactive
design, which allows the user instant feedback with the
spacecraft model.  The code had a charging time of 6000
seconds with 100 timesteps.  It took approximately fifteen
minutes on a 486/32 MB RAM personal computer.

Figure 5.  View of hypothetical satellite in NASCAP
2K/GEO highlighting the eclipse side view.

5.0 Comparison of NASCAP, SEE Handbook,
NASCAP 2K Results

For the NASCAP/GEO run, the sunlit side (sun incident
normal to the solar arrays), the solar cells charged
anywhere from –10.5 kV on the edges to –8.5 to –9.5 kV
directly in the center going outward, respectively.   Figure
6 shows the potentials for the sunlit side.  Directly on the
opposite side of the solar arrays, the Kapton® in darkness
charged from –16 kV on the edges to –18.5 kV in the
center.  This is illustrated in Figure 7.  The strip of SIO2
(OSR in the other charging analyses) charged 2 kV less
negative than the adjacent Teflon® (-13 kV and –15 kV,
respectively).  The black Kapton® faces of the spacecraft
body were –6.5 kV and they were partly exposed to
sunlight.  The Teflon® in sunlight was approximately –
8.5 kV, while on the eclipse side, it charged to –15 kV.
This shows the strong influence of the photoelectron
effect in geosynchronous orbits.  Ground was –6.3 kV.
The largest differential charging levels were between
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ground and the Kapton® side of the solar arrays, those
being 12 kV.

Figure 6.  NASCAP/GEO charging results.  Shown are
the potentials on the sunlit side of the solar arrays and
spacecraft body.  The largest potential is –10.5 kV.

Figure 7.  NASCAP/GEO charging results.  Shown are
the potentials on the eclipse side of the solar arrays and
spacecraft body.  The largest potential is –18.5 kV.

The SEE Handbook charging run was 5000 seconds.  It
took less than two minutes for the code to run. Spacecraft
ground charged to –4.5 kV.  The sunlit side show the solar
cells charging from –2 kV at the far ends to –3 kV closest
to the spacecraft.  The spacecraft on the sunlit side
charged to –4.5 kV, while in eclipse it charged to –7 kV.
The Kapton® side of the solar arrays also charged to –7
kV.  Figures 8 and 9 show the potential charging results
from this run.

Figure 8.  SEE Interactive Charging Handbook charging
results.  Shown are the potentials on the sunlit side of the
solar arrays and spacecraft body.  The largest potential is
–3 kV.

Figure 9.  SEE Interactive Charging Handbook charging
results.  Shown are the potentials on the eclipse side of the
solar arrays and spacecraft body.  The largest potential is
–7 kV.

For the NASCAP 2K/GEO run, the solar cells charged
between –11 kV to –15 kV in the middle, to -17 kV
closest to the spacecraft.  While the Kapton® side of the
solar array charged –22.5 kV.  The spacecraft body
charged from –16.5 kV in sunlight to –20.5 kV in
darkness. These results are in the same region as the
NASCAP/GEO results, albeit more negative.  Figures 10
and 11 show the potential results for this run for the front
and back sides, respectively.
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Figure 10.  NASCAP 2K/GEO charging results.  Shown
are the potentials on the sunlit side of the solar arrays and
spacecraft body.  The largest potential is –17 kV.

Figure 11.  NASCAP 2K/GEO charging results.  Shown
are the potentials on the eclipse side of the solar arrays
and spacecraft body.  The largest potential is –20.5 kV.

6.0 Conclusion

For the same model, the three charging codes all show
charging in the kilo volt range.  The SEE Handbook
shows the most modest charging levels of –2 kV in
sunlight to –7 kV in eclipse, thereby creating a differential
level of approximately 5 kV from front to back.
NASCAP/GEO showed charging of –9 kV on the solar
arrays to –18 kV on the eclipse side.  Ground was –6.3
kV, which yields a 12 kV differential charge.  The Beta
version of NASCAP 2K/GEO had the largest absolute
charging of –11kV in sunlight and –22 kV in eclipse,
yielding a differential charging level from front to back of
11 kV.  The larger absolute levels for this model concurs
with the idea that NASCAP/GEO did not charge to as

high of levels as would actually be seen by the spacecraft
[Katz, private communication, 1999].

The results from both the SEE Handbook and NASCAP-
2K/GEO were similar to those of NASCAP for this
particular spacecraft.  Although further validation is
warranted, it appears that the SEE Handbook provides
credible initial estimate answers for spacecraft designers.
Results are within a factor of 2 of NASCAP and its ease
of operation as well as available guidelines and multi-
platform compatibility make this an excellent program for
a cursory analysis to see if a possible charging problem
may exist.

Users looking for more detailed analyses can utilize the
NASCAP 2K/GEO program.  Again, the NASCAP
2K/GEO results were similar to NASCAP/GEO.  By far,
the ease of modeling the spacecraft in NASCAP 2K/GEO
is a marked improvement from that of NASCAP/GEO.
Also, the interactive three dimensional graphics
capabilities of NASCAP 2K cut down the modeling
iterations dramatically.  NASCAP 2K/GEO is an exciting
prospect for spacecraft charging modeling for the years to
come.
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