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Abstract

Equipment for measurement of internal charges in dielectric materials has been developed in order to apply it for
spacecrafts as a real time charge monitoring system. A non-destructive and direct measurement technique, called
PIPWP method, is utilized to observe charge distribution of dielectrics in bulk. This method also enables us to measure
the charge accumulating process in real time. The measurement results clarified the charge accumulating/dissipating
process in a PMMA film during/after electron beam irradiation for 5 minutes. The distributions of the electric field and
the electric potential were also calculated. A spacecrafts’ onboard charge monitoring system concept is outlined and it
was found that we needed further modification to put it in practice.

Introduction

Spacecraft Charging has been thought as one of most possible causes of spacecraft failures because it induces
degradation of dielectrics, anomalies or breakdown of on-board electronics''. Although NASA has been conducting
thorough investigations on charging related phenomena since 1970s, spacecraft anomalies, which are caused by
spacecraft charging, still exist’™. It means that we need further understandings on charging related phenomena and
improvements for preventing the failures and anomalies.

Most of studies carried out in the past focused on Surface Charging which occurs on the surface of a spacecraft in
low energy plasma environment because it was thought that it caused surface discharges™). Recently, however, it has
been pointed out that there is possibility that Internal Charging is related somehow to discharging of spacecraft besides
surface chargingl.

Measurement systems for surface charging have been well established and successful for over 30 years. On the
other hand, deep charges are difficult to measure by the existing techniques. Thus, nobody has tried direct measurement
of charged particles in dielectric materials used on spacecraft.

We succeed in developing a new type of deep charge monitor system™ which utilized a PIPWP (Piezo-electric
Induced Pressure Wave Propagation) method'® recently. It enables us measuring charge distribution directly and
continuously in real time. We measured the charge distribution in a PMMA (Polymethyl Methacrylate) film during/after
electron beam irradiation (230 keV). The results showed that the electron beam penetrates the sample at about 300 um
under the irradiated surface. The results of the experiment are summarized in this paper.

Based on this achievement, we are planning to install this measurement system on a small experimental satellite to
be launched in 2005. This satellite, SERVIS (Space Environment Reliability Verification Integrated System), is being
developed to verify commercial off-the-shelf parts and technologies in the severe space environment so that they can be
utilized for space applications. In verifying them, precise information of space environment is required and thus a
measurement system which are consist of particle detector, monitors for SEU (Single Event Upset)/SEL (Single Event
Latch-up)/TD (Total Dose) are to be installed.

Our system, however, was developed for the use under atmospheric condition and needs to be modified to sustain
the space environments. In this paper, the onboard charge monitoring system concept is outlined and required
modifications are discussed.

PIPWP Method

The PIPWP method is applied to our system. Principle of the PIPWP method is shown in Fig. 1. The pulsed
pressure wave p(#) acts as a charge probe. When there are electric charges (z) in the sample, the position of charges
will be moved slightly by the pressure wave, then the movement of the charges induces the change of surface charges
on the electrode. The differential of surface charge (dg(f)/df) causes a displacement current i(¢) in the external circuit.



The time history of the displacement current indicates
the charge distribution in the sample. The detected
displacement current is given by equation (1) which is
expressed by convolution integral, where ,, is density
of the sample, uy, is acoustic velocity in the sample, a is
thickness of the sample, Z;, and Z, are acoustic
impedances of the sample and aluminum respectively.
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Measurement System

Figure 2 shows the system diagram of the
measurement system. It consists of “Pulse generator”,
“Sensor”, “Power supply”, “Digitizing oscilloscope”
and “Computer”. The pulse generator supplies a pulsed
voltage (200V, 400ns) to the piezo-electric transducer
(PVDF 9um) in order to generate a pulsed pressure
wave propagating toward the sample. The electric signal
that is measured in the sensor is taken into digital
oscilloscope and the data is sent to computer. Computer
controls all the system so that the real-time and
continuous measurements of the charge distributions are
carried out during/after the irradiation.

Figure 3 shows a schematic diagram of the sensor.
The electron beam irradiates the sample within the hole
(96mm) on the top. Both surfaces of the sample and the
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glass are aluminum coated in order to ground the top surface of the sample and the bottom surface of the glass.
Therefore, the bottom of the sample is floated and it is where the electric signal is acquired. The dimension of the
sensor is 89mm(W) 54mm(D) 50mm(H) and the weight is 400g.

Electron Beam Irradiation Experiment

We tried to measure the charge accumulation and deposition process inside a dielectric sample (PMMA) of 510 um
thickness. Figure 4 shows a schematic diagram of the irradiation equipment. Electrons are accelerated in the vacuum
space with the acceleration voltage of 230 keV. The sensor is placed in the atmospheric space filled with N, gas for
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(1) Charge distribution

The observed charge accumulation process in the \
PMMA sample is shown in Fig. 5. The horizontal axis | | | / I I
indicates the perpendicular distance along the sample, |
and the vertical axis indicates the charge density p(z). N, gas ICables
The sample is in between the electrodes that those Sensor — .
interfaces exist at 0 and 510 um in the horizontal Digital oscilloscope
axis. The distributions are plotted in each 30 seconds Pulse generator
from —30 s to 5 min. The electron beam irradiates Power supply
from right to left as indicated in the figure. Note that
two peaks at the interfaces (0 um and 510 um) are Fig. 4. Electron beam irradiation equipment
positive charges that are induced by the negative
charges inside the sample. It is interesting to know
that the charges start to accumulate “evenly” in the region between the irradiated surface and a certain depth (315 wm in
this test). Subsequently, they start to have a peak around 220 um from the surface. This is because the electrons
accumulated near the surface are gradually attracted by the increasing positive charges induced at the irradiated surface.
Thus, only the charges near the negative peak can continue to accumulate. Another interesting observation is that the
rate of accumulation is decreasing as it goes on and it seems that it is going to saturate and reach an equilibrium state.
At the end of irradiation, though we did not continue until it is fully saturated, the maximum peak charge density is =33
uC/em’® at 220 um from the irradiated surface. The maximum penetration depth, which depends on the acceleration
voltage, does not change during the irradiation.

Regarding the resolution of these results, they have resolution of 31 wm in the irradiation direction. It is decided by
the input pulse width and the cut-off frequency of the Gaussian filter that cuts the high frequency noise. Narrowing the
pulse width naturally improves the measurement accuracy, but it requires a high performance pulse generator and high
voltage, which is difficult to supply in satellite systems. Conversely, it means that you can adjust the accuracy of the
measurement system as required.

After the irradiation, we continued to measure the charge distribution in the sample in order to clarify the
dissipation process of the accumulated charges. Figure 6 shows the results. They are of 0, 5, 10, 20, 30 minutes after the
irradiation. It is found that the charges are dissipating rapidly near the peak but some remained even 30 minutes after
the irradiation. It indicates that once the electrons are accumulated in a dielectric material, there exists some residual
charge even if the irradiation terminated. Another interesting observation in this figure is that the charges close to the
interface (electrode) are dissipating more rapidly than that accumulated in deeper location. This might be related to the
electric field distribution and will be discussed later.

(2) Electric field distribution
From the charge distributions, the electric field distributions can be calculated by integrating the Poisson’s
equation along the z direction.
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Where p(z) is charge density [C/cm’], ¢ is dielectric constant of the sample, E(z) is electric field, V' (z) is

electric potential and Z 1is the direction of thickness of the sample.

The calculated distributions of the electric field are plotted in Fig. 7. The electric field intensity grows up as the
charges are accumulating especially near the irradiated surface. Around the charge peak, however, it is weaker than that
of the other region. Thus, the electrons coming “uniformly” into the sample are affected by the strong electric field so
that the charge distributions have a peak inside the sample as shown in Fig. 5. At the end of the irradiation, the
maximum intensity of the electron field reaches =990 kV/cm, which appears near the irradiated surface.

The electric field distributions are also calculated after the irradiation as shown in Fig. 8. The intensity of the
electric field decays as the charges are dissipating. There exist remaining electric field of * 400 kV/cm even 30 minutes




after the irradiation.

One explanation for the reason why the charges close to the electrode dissipating more rapidly is that such electrons
are affected intensely by the strong electric field built up near the electrode as shown in this figure. Therefore, they
move quickly and the charge decay rapidly. On the other hand, charges trapped in deeper location move slowly because
there exist weaker electric field near the charge peak.

Another possible explanation is that the electric conductivity becomes larger near the irradiated surface and it
results in rapid dissipation of charges close to it. On the other hand, the charges in deeper location are difficult to move
because the conductivity around there does not change.
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(3) Electric potential distribution

The electric potential distributions during/after the irradiation can be calculated by integrating the electric field
distributions in the z direction. Figure 9 shows the variation of the electric potential distributions during the irradiation.
They clearly show how the electric potential is increasing during the electron irradiation. It is interesting to know that
the peak of the electric potential moves slightly from where it was at the start of the irradiation according to the charge
up process. At the end of the irradiation, the maximum strength of the electric potential is —16.8 kV at the depth of 230
um from the irradiated surface.

The electric potential distributions are also calculated after the irradiation as shown in Fig. 10. As the same reason
mentioned above, the potential peak moves slightly toward the deeper location. Even 30 minutes after the irradiation,
the peak value of the potential remains to be =8.0 kV.

Although the charge distributions are successfully measured in real-time, we need to conduct through experiments
especially on the following subjects in order to clarify the charge up mechanism inside dielectric materials.
(a) Relation between the charge peak location and the acceleration voltage
(b) Dependency of temperature on the charge accumulation/dissipation process
(c) Effect of electric density to the total amount of the accumulated charges
(d) Vacuum environment

These investigations would be a great help for understanding and modeling the charge/discharge phenomena.
Onboard Charge Monitoring System

As shown in above, we have succeeded in developing the deep charge measurement system and some interesting
observations are obtained from the electron beam irradiation experiment.

Based on this achievement, we have been planning to install this system onto a Japanese satellite in order to put it
into practical use. Our system, however, was designed for the use under the atmospheric environment as a first step.
Thus, we need to modify the whole system so that it can be used under the space environment.

In this section, the specifications of the satellite system are outlined, and the improvement of our measurement
system is discussed. The experimental results of out gassing tests recently conducted are also shown.

(1) SERVIS satellite

The satellite system we have been thinking of is called SERVIS (Space Environmental Reliability Verification
Integrated System) #2 satellite that is to be launched in 2005. This system was planned to verify commercial off-the-
shelf parts and technologies in the severe space environment so that they can be utilized for space applications. Using
low cost parts and technologies will drastically reduce the cost of satellite systems.

For verifying these parts, a space environmental monitoring system that measures the actual environment parts will
experience is needed. Thus, several monitors such as a single event upset monitor, a total dose monitor, a light particle
monitor and surface/bulk charge monitors will be onboard. We are going to make a proposal for this satellite system so
that our system is adopted as a bulk charge sensor.

(2) Design modification

The most important thing we must take care is the material selection that will affect the outgassing and
contamination characteristics. Presently, acrylic plastics are used for holding the glass as shown in Fig. 3 and they are to
be replaced with fluoloplastics. Vinyl coated cables inside the sensor are also replaced with Teflon coated cables. The
whole electric circuit (pre amplifier) will be potted.

The remaining problem we have to overcome is the use of silicon grease that is laying between the glass and the
sample. Since the pressure wave propagating through the glass and the sample acts as a charge probe in the PIPWP
method, the interfaces should be connected tightly so that the pressure wave could transmit them without attenuation.

We tested the outgassing characteristics
of the silicon grease and the PMMA, which is
currently used as the sample. Table 1 shows

Table 1 Outgassing data of materials

the experimental result. The test is conducted Material | TML[%] | CVCM [%] WVR [%]
at NASDA Space Center (Tsukuba) and it is PMMA 0.563 0.000 0.468
compliant with the ASTM E595-93. As shown Silicon 0.852 0.140 0.034
in this table, CVCM of the silicon grease grease

exceeds 0.1 %, which is the criterion of
NASA. Thus, we cannot use the silicon grease



for the onboard sensor. An alternative way to establish the firm contact is simply adhering between the glass and the
sample. However, we have not found any adhesives appropriate for our usage.

Another thing we have to consider is the interface with the satellite. If the charge distributions inside the sample
are measured continuously, huge storage and high-speed data processing system are required. However, if we use this
equipment as a alarm device for accumulated charges, required accuracy for the charge distributions will be eased and
this results in lesser storage and simpler measurement system.

Summary

Measurement equipment using PIPWP method for investigating spacecraft internal charging was developed
successfully. We measured charge distributions in dielectrics sample (PMMA) during/after the electron beam irradiation
in the atmosphere. The experimental results clarified the charge accumulation/dissipation processes inside the sample
and showed some characteristic as follows. (1) The charge build up occurs at a certain location that is affected by the
acceleration voltage. (2) Some charges still remain inside the sample after the irradiation stops.

The electric field distributions and the electric potential distributions are also calculated. As a result, it was found
that strong electric fields are induced near the interfaces and the high electric potential builds up at the charge peak.

We have shown the only test case but we need through researches such as on dependency of the acceleration
voltage, temperature, the current density and vacuum. These investigations will contribute to analysis on the charge up
mechanism and the discharge characteristics.

The outline of SERVIS satellite on which our equipment will be installed as a charge monitor is shown and the
design modifications to our measurement system are briefly summarized. More detailed specifications are working out
currently.
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