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ABSTRACT

This paper introduces a synthesis of plasma propulsion
electric effects and presents the analyses done by the
Research Department of Alcatel Space to solve these
problems. The effects, directly related to the interactions
of the artificial plasma created by the electric thruster
can be divided in three parts. The first is the
electrostatic impact of the plasma on spacecraft
charging. The second kind of interactions is the
influence of the plasma on solar panel performances.
The last electric interaction is the creation of parasite
shorting currents in the satellite structure. For each part,
perturbating effects are explained, specifications and
needs and also our present solutions and collaborations
are described.

1. INTRODUCTION

The always increasing of satellite on orbit life and mass
make the Electric Propulsion Thruster more and more
attractive for station keeping on geostationary
telecommunication satellites. First developed by
Russian researchers, the Stationary Plasma Thrusters
(SPT) technology will be commonly used on
commercial satellite in Europe in a nearest future. The
Alcatel Space next satellite platforms will use SPT 100
for north-south stationkeeping. However, the
introduction of an electric propulsion subsystem on our
telecommunication satellite represents an innovation
that requires to study their potential repercussion on the
other systems of the satellite.
The Research Department of Alcatel Space studies the
interaction between the plasma plume of SPT 100 and
spacecraft. Generally the phenomenon of surface
degradation (erosion and sputtered particles re-
deposition) is clearly identify as potential interaction. In
the same way, the disturbance forces induced by plasma
jet on spacecraft surfaces and the effects of  plasma jet
on telecommunication satellites are discussed in many
papers. On the other hand, the electric effects of plasma
created by SPT 100 or more generally by electric
thrusters are less known. Nevertheless, they can lead to
upsets ranging in spacecraft electronics, power loss of
solar panel and disturbing sensitive electronic
equipment (by the circulation of parasite currents in the
structure).

In a SPT thruster, the propellant (Xenon) atoms are
ionised in a discharge chamber (anode). An electrostatic
field is then used to accelerate the positive ions to
produce the required thrust. To prevent the spacecraft
from charging, the positive ion beam must be
neutralized by an equivalent negative charge. In SPT
100 this electrons source is a hollow cathode. The
plasma ejected by the SPT is then neutral, cold and very
dense ( about 1017 m-3 30 cm away from thruster exit).
Moreover a secondary plasma is created by charge
exchange collisions between fast ions (primary ions)
and slow neutral atoms. This relatively dense (about
1012 m-3) low energy plasma can expand around
spacecraft. These plasmas constitute charged particles
store which can create some parasite current due to the
interaction between plasma and spacecraft. It is then
necessary to perform detailed analysis of this possible
electric interactions between plasma of SPT and
spacecraft. Since 1994, Alcatel  Space has worked on
the interactions between plasma plume and spacecraft
and greatly increased its knowledge of these
phenomena. Especially a big amount of effort has been
recently made in the Research Department to set up the
analysis and the modelling of these effects in order to
predict the impact of electrical propulsion on spacecraft.

2. SPACECRAFT CHARGING

Spacecraft charging is considered as a phenomenon
associated with the interactions between plasma and
spacecraft surfaces. Charging effects can produce
potential differences and high electrical field between
spacecraft surfaces or between spacecraft surfaces and
spacecraft ground. Above breakdown threshold, an
electrostatic discharge (ESD) can occur. The transient
phenomenon generated by this discharge may couple
with spacecraft electronics (ElectroMagnetic
Compatibility) and cause upsets ranging from logic
switching to complete system failure. Discharges can
also lead to degradation of exterior surface coatings and
induce contamination of surfaces.
The charge and discharge phenomena due to the natural
plasma in geostationary environment are studied for a
long time.  Methods and design rules have been set out
to prevent from spacecraft charging and ESD
occurrences in this environment1. But, the charged
particles flow ejected by the electric thruster creates an
artificial plasma which modifies the natural electrical



environment of the spacecraft. The software ESCAPE2

(ElectroStatic Charging in Artificial Plasma
Environment) developed in collaboration with the
RIAME (Research Institute of Applied Mechanics and
Electrodynamics in Moscow) simulates the electrostatic
charging of a spacecraft with electric propulsion on
board in geo-stationnary environment. This software
calculates the modification of spacecraft surfaces
charges and potentials due to the plasma of the electrical
propulsion.  Its main inputs, in addition to the
geometrical description of spacecraft, the physical
properties of surface materials and the parameters
describing the geo-stationnary environment, are the
location of the thruster, the direction of the plume and
the distribution in angle of the particles (ions and
electrons) velocity and current density. The outputs are
the time dependence of potentials and electrical fields
for surfaces cells, the time dependence of the current
density of each type of particle (current balance) on
surface cells, the 3-D visualisation with color indication
of the potentials and electric fields on surfaces (figure 1)
and visualisation of ions and electrons  trajectories
coming from the electric thruster (figure 2).

Figure 1 :  3D visualisation of surface potentials

The study of the capabilities of this new software is now
in progress at Alcatel.
Escape will be used to predict the surface potentials
when spacecraft is submitted to both  geostationary
environment (geomagnetic substorms) and plasma from
the electric thruster.
This prediction is necessary to verify that the surface
potentials meet the specifications (classical tolerable
levels according to the NASA guidelines, -1000V and
+500V).

Figure 2 : particles trajectories from SPT thruster

3. SOLAR PANEL POWER LOSS

When the solar panel is in contact with a dense and cold
plasma, it can, because of its active tension, collect a
parasitic current from the plasma which passes through
the solar cells and creates a power loss. This power loss
is mainly function of the plasma characteristics (density
and energy), solar array active voltage and spacecraft
structure characteristics.  The collection of parasitic
current can arise from interaction between the solar
array and the ambient space plasma (in Low Earth
Orbit) or interaction between the solar array and the low
energy  dense plasma emitted from electric thruster3.

Examine the voltage-current characteristics of a
conductive element immersed in a plasma. The active
voltage is externally applied and the current collected
from the plasma is measured. This is the principle of a
Langmuir probe. The typical curve obtained is given
figure 3.

Figure 3
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If the probe is not polarised, the potential Vf at which
the probe fits corresponds to the equilibrium state where
the sum of current on the probe is zero.
At the plasma potential Vp, the probe doesn’t disturb the
particles trajectories. The charged particles migrate to
the probe because of their thermal velocities. Since
electrons move much faster than ions because of their
small mass, the probe collects predominantly electron
current. If the probe voltage is superior to Vp, the ions
are repelled and the probe collects mainly electrons
(Ie

sat). On the contrary, at large negative value (V<<Vp)
nearly all of the electrons are repelled, and we have only
an ions current (Ii

sat).
Between Vf  and Vp (transition region), the electrons
begin to be repelled and the ions accelerated. If the
electrons distribution is Maxwellian, the shape of the
curve here is exponential : Je= Jeo exp [-e (V-Vp )/KTe].
So if the electron energy, Te, is low the current
increases rapidly between Vf  and Vp.. In other words,
this  transition region is very small.

A spacecraft in space environment or in any other
plasma acts like a Langmuir Probe. Each surface of the
spacecraft will assume the floating potential (Vf),
function in this case of the surface material
characteristics. More particularly, the passive
conductive structure of spacecraft will adjust itself to
the floating potential. But, a solar array is an active
system. By the working of solar cells, the solar array
develops active voltage. If we consider that the solar
array is constituted of only one string of the solar array,
the voltage is distributed along the string as shown on
the figure 4. In a cold and dense plasma the active
voltage Vgs is higher than the interval [Vf; Vp] (see
figure 3). The floating condition for the solar array
requires that the zero potential point of the array adjusts
itself so that no net current is collected; that is, the
collection of ions equals the collection of electrons. In
balancing currents, the spacecraft conducting-area must
be taken into account. In theses conditions, in a dense
and cold plasma some cells will collect a high electrons
current (Ie

sat) whereas the other part of cells will collect
ions4,5  :

The electrons collected by the cells generate a
parasiticcurrent in these cells.  The overall effect on the
solar array of parasitic current is to change the effective
operating point of the solar array : The current at each
solar cell is the sum of normal load current and parasitic
current. So as the figure 4 of solar cell I-V curve shows
it6, when the current increases the potential decreases
and so degrades useful array power output.

Figure 4 : Solar cell I-V curve

Extending the operating voltage of solar arrays  to
higher levels  (> 100V) requires to consider the power
loss due to the interaction with dense and cold plasma.
Indeed, the parasitic current collected by the solar cells
from the plasma may substantially impact the capability
of the array to deliver the required power. In
geostationary environment (hot and not very dense
plasma) the parasitic current is a very small fraction of
the array current and is therefore not observed. But this
parasitic current may result from the interaction of
spacecraft-generated plasma by electric thruster and
high-voltage solar array. The plasma can be either the
plasma jet ejected by the thruster. In this case, in our
spacecraft configuration, the inboard sections of the
solar array will be the most affected. Or it can be the
Charge-EXchange plasma (back flow) generated by the
electric thruster. This plasma is less dense than the
primary plasma jet, but it can be sufficient to generate
power loss on some section of solar array. For example
if we consider only the first inboard string of our GS ( at
about 2.5 m of the thruster ), the density of  plasma at
this place is about 1.5 1012 m-3 and the temperature is
about 2 eV. In this case with SPENVIS/SOLARC, we
can estimate the parasitic current. In the conditions
described above, the order of magnitude of the parasitic
current through one string is about a few mA, that is
relatively negligible towards normal load current (about
1-2 A). But it is necessary to estimate more precisely
this current because a lot of parameters impact the
results: The model of current collection (secondary
emission, photoemission), the geostationary
environment, the sheath effect on the connectors. Of
course, parasitic current can be calculated if the
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collected current is know. But this collected current is
mainly function of the plasma characteristics along the
solar array. These characteristics vary with the distance
between the considered solar array element and the
electric thruster. Therefore, the most difficult problem is
to obtain the distribution of the characteristics of the
plasma created by electric thruster along the solar array.

4. SHORTING CURRENT

If an isolated conducting element is in contact with a
plasma which characteristics (Vf and Vp for  example)
change along this conductor, a shorting current can be
created in the conductor. If a difference of potential, due
to the modification of the plasma, is applied on the
conductor, a shorting current is generated.

For example, suppose a conducting plate (PC) immersed
in a plasma divided in two zones. The characteristics of
the plasma (Vf, Vp, Te, Jeo, Jio) are not the same in
each zone. This configuration is obviously not really
physical but it permits to explain the principle.
See the figure 5 below:

Figure 5

If we consider the plate only in the zone 1, the floating
potential of this part of the plate will be Vf1 on the plot
1. In the same way the floating potential of the plate in
the zone 2 will be Vf2 on the plot 2.
As the plate is conductive, the potential of the plate will
fit a new floating potential (Vft) to have zero total
current . So, as the plots above show it, the part 2 of the
plate  will collect electrons (point B) from the plasma in
the zone 2 and the part 1 will collect ions (point A)  of
the plasma in the zone 1. Hence, a current is created and
circulates on the plate from the part 1 to the part 2. See
the figure 6 below :

Figure 6

We would have obtained the same result if we supposed
Vf1>Vf2. The only difference is the direction of the
shorting current circulation.

We can applied this phenomenon to the impact of the
plasmic thruster on spacecraft. Indeed, the potential and
more generally the characteristics of the plasma jet
ejected from the truster change along the jet line.
Therefore, if the plasma jet is in contact with conducting
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elements of SC structure through different zones, a
shorting current will be generated in these elements
(case 1 of the figure 7 below).

In the same way the secondary plasma produced by the
back flow can generate shorting current in the
conductive structure of the spacecraft when they are in
contact with it (case 2 of the figure 7).

Another case can occur : One part of spacecraft
structure, the Solar Array (SA) for example, is in
contact with the plasma jet of the thruster while another
part is in contact with secondary plasma. In this case, a
shorting current will circulate between the solar array
and the spacecraft body (case 3 of the figure 7). This
case could be critical because these currents create a
large current loop (with size equals approximately to the
size of the Spacecraft plus the solar array). This current
loop oscillates in correlation with the pulses of the EP
discharge current and therefore creates magnetic
oscillations and consequently potential electromagnetic
interference. Moreover, these oscillations increase after
some hours of the thruster operating.

Figure 7

This last case is probably the most critical because the
plasma ejected by the thruster is cold ( 2 eV ) and very
dense (about 1013 m-3 at 4m from the thruster). This
plasma can provide a high current density ( about 0.4
A/m2 at 4m from the thruster).

A collaboration with the TsNIIMASH (Moscow) has
been built up in order to perform an analytical study on
shorting currents generated by the interaction between
SPT 100 and spacecraft. In a first phase of the study, an
order of magnitude of the shorting currents intensity
will be determined to have an estimation of the criticity
of this phenomenon. The results will be compared with
the specification of common mode emission on
structure (Ampere peak versus frequency).

5. CONCLUSION

Fruits of a continuous effort, Alcatel Space has
drastically increased its knowledge concerning the
electric effects of plasma propulsion on spacecraft.
Based on theoretical studies, numerical developments
and international collaborations, we can say that no
major electric risks are associated with the use of
plasma propulsion. The future work of the Alcatel
Space Research Department will be to study all these
electric effects as a whole. Indeed, these effects are not
independent of each other.
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