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Abstract:
We have developed an electromagnetic particle
simulation code with an unstructred-grid coordinate.
This code solves Maxwell's equations which is
discretized with triangular elements in 2D simulation
space. Plasma particles are also traced by solving the
equations of motion with the Buneman-Boris method.
The main advantage of this code is the adaptability of
modeling more realistic shape of a spacecraft than the
orthogonal grid code. Thus, this simulation code is
suitable for analyzing the plasma environment in the
vicinity of a spacecraft especially in the region within a
Debye length from the surface of the spacecraft. We will
show the scheme of this code and also show a couple of
results from the test simulation runs taking into account
of a realistic shape of a spacecraft.

Introduction:
Plasma particle simulations are extensively used by
many authors. As an example of the simulation codes,
KEMPO (Matsumoto and Omura [1984] and Omura
[1985]) provides a good experimental environment for
modeling the fundamental space plasma physics and
the non-linear plasma physics. Recent modif ications
allow us to include the internal boundaries within the
experimental space (Tanaka [1989]).

Spacecraft design requires more complicated shape to
estimate the actual noise level of the scientif ic
instruments. GEOTAIL, for example, is designed as a
cylindrical shape. Two masts are extended from the side
of the body. The solar panels are also attached on side
of the cylindrical body. It was concerned that the noise
may be generated by the solar panels because the
shadow of the masts cuts the current of the solar panels.
Solar Probe is another good example for us to find
diff iculties on modeling the spacecraft environment.
Solar Probe has a heat shield on top of the scientif ic
instruments in order to protect the instruments from the
solar radiation. Although we have a couple of choice for
the material we are going to use for the heat shield, the
cost will highly depends on the material. Decision has
to be made on the balance between the cost and the
scientif ic return. A main concern of the engineers is the
electromagnetic environment of the scientif ic
instruments at the perihelion (4RS ). We have to estimate
how it works and how the environment will be modif ied
by the carbon emission from the heat shield. This is the
major motivation for developing a new code, which can
handle arbitrary shape of a spacecraft.

Algorithms to solve electromagnetic field in the
irregular mesh have been introduced by Seldner et al
[1988].  In order to interpolate field quantities, a two-

dimensional area-sharing method was used. The main
shortcoming of this method is ineff iciency and
inaccuracy that arises when mesh with large variations
in element size are employed. Pointon [1991] introduced
a method to handle slanted conducting boundaries.
This algorithm can easily be applied to most relativistic
electromagnetic particle codes which use the orthogonal
grids.  Although this method can easily be applied to
existing simulation codes which adopt the orthogonal
coordinate system, this method can not be applied to a
curved boundary.

We adopt triangular coordinate system for the field
mesh, both for the electric f ield and the magnetic fields.
This triangular coordinate system can be used for model
to fit any shape of the internal and/or the external
boundary. A method to solve Poisson's equation in the
triangular mesh is well known with the finite element
method (FEM).  A main shortcoming of this method is
that the discretization method of space is not suitable
for the time-dependent system. We have developed a
new discretization algorithm for the time-dependent
triangular coordinate system.

As for a model of particles, Matsumoto and Kawata
[1990] have introduced a particle-in-cell model using
triangular-mesh for the magnetostatic fields. They
adopted a circular shape function for the charged
particles with a finite radius. Solving the
electromagnetic field self-consistently is indispensable
for the evaluation of the electromagnetic environment in
space plasmas. Abe et al. [1986] showed that a higher
order spline interpolation removes the limit of the
maximum grid spacing relative to the Debye length.
The application of the higher order shape function to the
triangular grid system is not necessary for the current
objectives. For simplicity, we adopt the linear area
sharing scheme for the shape function to obtain the
charge density and the current density.

Scheme:
Basic equations we solve are the Maxwell equations as
shown in equations (1)-(4). Electric and magnetic fields
are def ined at the staggered time steps with a time
difference of ∆ t/2, where the ∆ t is the time step of the
simulation.

(1)

(2)

(3)

(4)



CFL :   1)
1

(

)BB(EE

EBB

i

i

2
1

-n
2
1

n

N

1k

2

1

ij
2

1
n

i
2n

j
1n

j

N

1k

n
kii

∑

∑

=

+
+

=

<∆

−
∆

+=

∆
+=

+

k
i

k
i

i

j

k
i

m

l

A
tc

m

t
c

l
A

t

B)E( ×+= i

s

si
v

m

q

dt

dv

∑

∑
=

=

A

A

s

is

q

vq

ρ

J

The values Oε  and Oµ  are the dielectric permitivity and

the permeability of the free space, respectively. The
electric f ield E and the magnetic field B are def ined as
three-dimensional vector space. The conduction current
J and the charge density ρ  are described using plasma

particle properties with the following equations.

(5)

(6)

The motion of the charged particles in the
electromagnetic f ields is described with the equations of
motion written as:

(7)

Here, the vectors vi  is the velocity of the i-th particle.
The quantities qs  and ms  are the charge and the mass of
the s-th particle specie, respectively.

In 2D simulation, the simulation space is discretized
with the triangular grid. Electric and magnetic field
component within XY plane are def ined at the side of
each triangular element. The Z component is def ined at
the center of the triangular element. Thus, the rotation
of XY component is obtained as a summation of inner
product of Exy and the side vector along the triangular
element.

Fig. 1. Electric and magnetic field components within
the simulation plane are def ined at the vertex of the
triangular elements.

Fig. 2  Electric field and magnetic field components in
z direction is def ined at the center of the triangular
elements.

The rotation of Z component is obtained as the finite
difference between two adjacent Z components. Figure 2
shows geometrical configuration between two adjacent
triangular elements.

We briefly describe the numerical stability condition of
this scheme. The differential equations (1) and (2) are
integrated with the leapfrog scheme. We assume J = 0
for simplicity. The variable lk and mj are the length of
the side k and distance between the gravitational centers
across the j-th side, respectively. We have

(8)

(9)

(10)

Thus, we obtain CFL condition of this code. This
indicates that the ratio between the speed of light and
the numerical speed must not exceeds unity. This
condition must strictly be satisf ied for numerical
stability. This means that if we use non-uniform grid as
a model the smaller time step is required in the smaller
grid region. Thus for the particle simulation using leap-
frog method uniform triangular grid is more suitable
rather than the irregular grid depending on the
complexity of the spacecraft. This limitation is not
essential as far as we are able to use enough computer
resources.



Fig. 3 Electric field vector  obtained with a test simulation of the electromagnetic environment around SFU
spacecraft. EM field source is located on the right side of the solar panel.

Results:
We have performed two test simulations with different
type of internal boundary as a model of a spacecraft.
Both results show initial stage of the simulation runs
which tests the algorithms for Maxwell equations.
  Figure 3 shows the results of a simulation which
model Space Flyer Unit (SFU) launched by ISAS,
1996. This spacecraft has two solar panels attached on
the main body. This simulation was intended to
simulate how the EM wave propagate around the
spacecraft due to discharge on the solar panel.

  Figure 4 shows another results obtained by modeling a
space shuttle like shape as an internal boundary. This
simulation run is aimed to solve telecommunication
environment of a large spacecraft. Thus the source of the
electromagnetic wave is located at the edge of the
simulation space.
  In both cases, the scheme is properly solved and the
electromagnetic environment is clearly reproduced by the
simulation. As a test simulation, we adopt fixed
boundary condition for the outer boundary.  



Fig. 4 Electric f ield vectors obtained with a test simulation of the electromagnetic environment around space shuttle
like spacecraft. EM field source is located on the upper edge of the outer boundary.

Summary:
The two-dimensional triangular grid electromagnetic
particle code has been programmed and has been
evaluated for its performance. We performed two test
runs with 4096 grids with two different type of
spacecraft as a model. First, the CFL condition has
been checked for the light wave without the plasma
particles. The energy conservation and Poisson's
equation solver have been tested with the test particle
simulation.

In order to simulate the charging effect of the spacecraft,
charge accumulation has to be taken into account along
the internal boundary. 3-dimensionalization and taking
into account of material parameters of the spacecraft are
left for the future expansion of this code.
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