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Abstract

The French Earth-Observation spacecraft SPOT-4 was
launched in 1998 in a low-altitude polar orbit. The orbit
plane has a fixed direction with respect to the sun at the
10h30 local hour. SPOT 4 is "three-axes stabilized",
which means that its orientation is fully controlled
relative to three axes, with aside alwaysin the wake.

Two voltage probes were aboard SPOT-4, one on the
wake wall, the second one on the opposite face, on the
ram side. Each sensor is an electrostatic voltmeter
monitoring the positive or negative voltage of an
insulated aluminum electrode with respect to the
spacecraft main frame. The first objective of this
experiment was appreciating the charging hazards on
LEO orbits, especially when crossing the auroral zones.

Three kinds of profiles have been observed. At each
output of eclipse, the ram probe becomes slightly
positive as the result of a combination of the ion
collection in the ram and photoemission charging when
the sun illuminates the electrode. Some rare, short and
low-differential-voltage charging events were observed
while crossing auroral zones.

1. The SPOT -4 Spacecr aft.

The satellite SPOT-4 was launched March 24, 1998 on a
98.7° inclination, quasi-polar orbit at 822 km altitude (at
equator). SPOT is the French Earth-Observation
program. A mission requirement is heliosynchronism.
The descending node is at 10:30 am (sun local time) and
the sun vector has a fixed angle on the orbital plane
(figure 1).

The main payload of the spacecraft is a CCD push-
broom camera, so SPOT-4 is three-axes stabilized, the
velocity vector is fixed to spacecraft axes, one wall is
permanently on the ram side, the opposite wall on the
wake side (figure2). The line of sight is the nadir
direction. The design of the SILLAGE experiment
("sillage" is the French word for "wake") uses this
specificity.
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Figurel- Orbital plane of SPOT on six months
2. The SILLAGE payload

Charging events, experienced by several low-altitude
polar orbit satellites, have been reported.

Figure2- Orbital configuration of SPOT-4
(the line represents the trajectory)



Some of them were instrumented with ion spectrometers:
FREJA orbiting on the low-altitude interval 1000 to
1800 km or DM SP on the same orhit as SPOT.

Events always occur on the night side, when crossing the
thin aurora zone where plasma density is deeply
decreased during a particle precipitation. Moreover in a
few cases, a discharge from an estimated 3kV-
differential voltage triggered resets an on-board
computer of the DM SP satellites[1].

Figure3- Voltage probe on the wake side

Designed with mitigation techniques of geosynchronous
satellites, added to the fact there is no internal charging
at low atitudes, none of the four SPOT satellites
experienced electrostatic discharges. To share between
the roles played by technology and environment in this
success, it was decided to implement surface voltage
monitors on SPOT-4. As the worst case of differential
charging was expected in the wake, a voltage probe was
implemented on the backside wall (figure3). For
reference, an identical probe was set on the front side in
the ram. This experiment is not science, only the

measurement of the voltage build-up on a floating
aluminum piece set on the external spacecraft surface.
It is reduced at the minimum, there is no companion
payload monitoring the environmental parameters,
plasma density and flux. The voltage is measured in
permanence and transmitted when crossing over a
predefined threshold or on ground command.

3. Description of hardware

The probe was designed by SNECMA (formerly SEP,
Société Européenne de Propulsion) under a contract of
the European Space Agency [2]. It is a miniature
voltage probe initially designed for measuring the
surface voltage to ground of a solar cell. It vas
modified for fixing on awall, integrating a preamplifier
(figure 4).

Figure4- Photograph of the voltage probe
including the preamplifier,
the 9-pins Sub-D connector givesthe scale

The command and measuring electronic boards were
designed at CNES. The principle of the probe is a
variable capacitance. An aluminum electrode collects
impinging charges from the environment. An
underlying vibrating electrode is connected at the input
of the preamplifier (figure 5). This electrode presents a
variable capacitance with respect to the collector and to
the ground. From the variable replacement current, a
sine voltage, proportional to the static voltage of the
collector, is present at the input of the preamplifier.

An electromagnet is generating the oscillation of the
intermediate electrode (figure 6). The frequency was
chosen at 517 Hz not to interfere with the main payload
of the SPOT spacecraft, the CCD camera requiring
high stability. Moreover, dampers isolate the probe
mechanically from the spacecraft frame. The voltage
range has been adjusted in the interval -4 to 4 kV with



a sensitivity of 2 V, automatic polarity detection and
range switching.
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Figure5- Electrical scheme

There is one measurement per second for each probe.
Due to the limited amount of on-board mass memory, a
window of about 10 minutes has been allocated to this
experiment every day. However for not missing a
charging event, the voltage measurement is acquired an
stored in permanence in a loop memory. When a
measure is above a predefined value, storage is frozen
9minutes later and transmitted to the spacecraft
telemetry subsytem. This feature gives one-minute
pretriggering capability and visibility to the actual
beginning of the event. By reducing the time resolution
and reguesting more resources, data of a whole orbit was
also available.
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Figure6- Mechanical drawing

4. Flight data

In April 2001, more than three years of data have been
accumulated showing three typical signatures.

4.1 Signature of quiet environment

Most of the time, there is a null collector voltage with
respect to the frame reference. However, without any
exception, at each revolution, the ram-probe exhibits a
positive voltage roughly twenty minutes, the wake probe
is remaining uncharged the whole orbit. On figure 7, four
measurement sequences of the same revolution have

been gathered with respect to the orbital angle from the
ascending node.
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Figure7- Ram probe response

The collector voltage becomes positive with a fast rise
time, there is a maximum by the north pole, a slow
decrease to zero. The y-axisis graduated in "Isb", |east
significant digit of telemetry. Roughly, 1 Isb represents
1 volt. The voltage is measured with respect to the
satellite ground, not to the plasma potential. As the
solar array is positive (28 to 34 V, depending on the
battery voltage), the voltage frame with respect to
plasma potential is afew volts negative.

As it can be seen on figure 1, the acending node is
awaysin the night side (at local time 10:30pm). On the
figure 8, the sunlight flux is drawn with respect to time,
taking into account the earth shadow and the angle
cosine between the sun direction and the collector
surface. The x-axis is time, with the ascending node at
about 5000s.
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Figure8- Sunillumination of probes (wake probe, top
view and ram probe, bottom view).

The ram probe voltage is in relation with the
photoemission by the UV sunlight (mainly the Lyman
apha line at 10.2eV) which makes the floating
collector positive. There is no symmetry between both
probes, the wake probe voltage stays to zero, even
lightened. As the satellite velocity is larger than the
thermal velocity of ions, positive hydrogen and oxygen
ions are collected by sweeping, also participating to
make the collector positive. This is not the case in the
wake for there is adepletion of ion [3].



4.2 Signature of charging events

In some rare cases, we have observed other signatures,
characterized by a positive or negative deviation from
zero of the wake probe voltage, with a simultaneous
positive increase of the ram probe voltage.

These events have always been very short, |ess than one
minute and occurring in the auroral zones (figure 9).
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Figure9- Low-atitude magnetic and plasma
earth environment.

On April 25, 1998, at 14:08 UT, an event occurred when
the satellite was crossing the South auroral zone. Initially
at a null voltage, both probes became positive
(figure 10). This happened seven minutes after the
maximum South latitude, at 14:01UT. The calculated
latitude is 65°S at the time of the event.
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Figurel0- April 25, 1998 event, South auroral zone.

We infer from both positive measurements that inside the
auroral precipitation of electrons, the satellite frame
builds up an absolute negative voltage. The wake probe
collector can carry a positive charge due secondary
electron emission and photoemission (near the South
pole, the wake side is illuminated). Inside the
precipitation, the secondary electron emission yield

becomes more effective with increased energy of
impinging electrons.

On May 2, 1998, at 09:08 UT, an event occurred when
the satellite was flying through the North auroral zone,
four minutes before the instant of maximum latitude.
The event latitude is 76°N. As usual, in this zone, the
ram probe voltage was positive around 10 volts while
the wake probe voltage was zero. During 30 s, the ram
collector voltage has become more positive and the
wake side negative (figure 11). We infer that during the
event, the absolute satellite frame voltage was more
negative. The ram probe remained clamped on the
plasma voltage while the wake probe collector was
negatively charged by the impinging electron flux.
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Figurell- May 2, 1998 event, North auroral zone.
5. Summary and conclusions

As expected, all charging events have occurred in
auroral zones on the night side. The duration of events
was aways less than one minute. Any hazardous
voltage has never been recorded in three years. These
results confirm the fact that electrostatic discharges in
LEO are exceptionally reported
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