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 Introduction

There are numerous aspects to interaction of bodies in space
with the plasma environment including • the charging of
surfaces, • formation of sheaths and wakes, • transport of
locally generated plasma, • plasma chemistry, • surface-
plasma chemistry.

The transport of charge and collection of current is one of the
fundamental problems in plasma physics.  This lecture will
address current collection with the theory of plasma probes
and then show how these concepts may be applied to real
interaction problems.  With a beginning in early vacuum tube
and lighting research, current collection is still an issue in
many areas:

– Plasma processing – Vacuum insulation
– Plasma diagnostics – Electric propulsion
– Interstellar dust grain charging
– Spacecraft potential control (Low Voltage)
– Spacecraft Charging (High Voltage)
–Solar array arcing
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 Outline

✹  Review of basic probe theory

–The Turning Point Method

– Orbit Motion Limited theory

– Space Charge Limited theory

– Magnetic Field Limited theory

– Presheath Theory
✹  Results of recent space flights

– SPEAR Space Power Experiments Aboard Rockets
– CHAWS Charge Hazards And Wake Studies
– TSS-1R  Tethered Satellite System
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Debye Screening

• The Debye Length, λd, is an important normalizing parameter.

• Start with Poisson ’s equation:  

• Define: Φ  = eV/kT,  λd = εokT/Ne2: ( )∇ = − −
2
V N n ni e

e

( )∇ = − −
−2 2

Φ λ d i en n
For Debye screening, assume a small test charge, -Ze, uniform

ion and equilibrium electron density,

Expanding the exponential gives,

with solution:

( )∇ = − − −





− +2 2
1Φ

Φ
λ δd e Z

N
r
&

( )∇ − = −
− −2 2 2

Φ Φλ λ δd d
Z
N

r
&

Φ =
−Z

Nr
e

d

r d

4
2

π λ
λ/

Debye screening can be a useful approximate screening model.

However, λd is not the sheath thickness for probes comparable

to λd in size and/or greater than kT in potential.
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Plasma Probes

Plasma probes are spheres, cylinders, and
plates, which are inserted into a plasma to
diagnose parameters of  the plasma, e.g.
Temperature  and Density.

Probes may be allowed to float to an
equilibrium potential or the potential may
be swept to generate a current-voltage, I-V,
curve.

Ideally, probes are ‘small’ compared to the
characteristic lengths of the plasma, but
may in practice, be almost any size.

A ‘probe’ theory must be used to extract
the plasma parameters from the probe data
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Probe Theory

Plasma probe theory is based on a self-consistent
combination of solutions to Poisson’s equation,

where Φ = eV/kT, and  ρ = e(ni -ne)

and  an appropriate solution to the plasma kinetic problem,
most generally described by the Boltzmann equation,

where f = f(x,v) is the velocity distribution function, and Dc
is collision operator.  For most space plasma problems,
collisions may be ignored on the scale of a probe, and the
Boltzmann eq. reduces to the Vlasov equation and a
general conclusion from Liouville’s theorem,

“f(v) is constant along trajectories”.

Density and current are velocity space moments over f(v).
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Turning Point Method
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For an given potential solution, the turning point method,
TPM, [L. Parker, 1981] can be used to compute particle
density and currents from a collisionless isotropic plasma
(no B) about a spherical or cylindrical probe.

Density and current are velocity space moments over the
distribution function,  f(v) = f(vr,vθ).  From Louisville’s
theorem, f() is constant along trajectories. These are curves
in vr vθ space and must be computed numerically.

Transform to a E,J (energy and angular momentum) space
by observing,  J2 = r2vθ

2  ,  and,
E  =  Φ + v2  =  Φ + vr

2 + J2/r2.
Trajectories are straight lines and the space may be
sectored by observing that real trajectories have vr

2> 0
everywhere along the trajectory, or J2  < g = r2 (E - Φ ).

Moment integrals are still numerical, but over limits
determined by inspection..
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Orbit Limited Collection

A special case of probe theory, valid for an isotropic
(Maxwellian) plasma in the limit of large Debye length,
is Orbit Motion Limited collection, OML, [Mott-Smith &
Langmuir, 1926; Laframboise & Parker, 1973].

With negligible space charge, the potential is Laplacian
or   Φ = Φoro/r.   The limiting J2  for vr

2> 0, is given by
the ‘g’ curves in the figure for two values of the particle
energy.

By inspection, we see there exists only type 1 and type
2 orbits, i.e..., there are no J2 barriers between any point
and infinity.

At the limit, g, vr = 0, and the trajectory is tangential,
and at J = 0, vθ = 0.  Thus all orbits connect to infinity,
once for type 1, and on both ends for type 2.

At ro we have only type 1, so we may return to velocity
space and determine the current: 111111111111111
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Orbit Limited Collection

The current is the first moment of the normal velocity,
vr over the velocity distribution:

The 2π results from the full half space integral over
polar angles, the Orbit Motion Limit.

The density in general still requires numerical
integration because of the mix of orbit types, but
approximations may be made for points near and far
from the probe.
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Space Charge Limited Collection

Another special case of probe theory, valid for an isotropic
plasma in the limit of small Debye length, is Space Charge
Limited collection, [Langmuir and Blodgett, 1924].

With non-negligible space charge, the potential must be
determined by Poisson’s equation self-consistently with the
density. Simple forms for Φ  are not generally available,
however we may learn much from inspecting special cases.

For the case of Φ = Φo(ro/r)2, we may observe that ‘2’ is the
greatest power of radius that presents no J barrier.

For higher powers, as illustrated, we see that barriers begin
to develop at some distance from the probe.

For large powers and high potential (negligible E), we may
observe  that the barrier is also an absorption radius. This
is the Space Charge limited case and if the absorption
radius, ra, can be found, the current is just,  I = Jo 4π ra

2.
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Space Charge Limited Collection

The absorption radius, or sheath edge may be determined by appealing to a space
charge limited diode model.

For an infinitesimally thin sheath, we may integrate the 1D Poisson equation to derive
the famous Child-Langmuir equation [Child, 1911; Langmuir, 1913]. For particles of
mass m, a gap of thickness D, and a potential drop V, the current density J is.

At the sheath edge, J = Jo., = Ne  kT/2π m , the thermal current density. Substituting,

For a spherical sheath, the numerical procedure of Langmuir and Blodgett [1924] has
been fitted to the semi-analytic equations of Parker [1981] and is further approximated
here for conditions where Ro/λD > 10,  and  D/Ro > 10. The sheath radius RLB , is,

The total current is,                                , where we have introduced the pre-sheath and its
enhancement factor, P.
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Current Collection
Between the Limits

The Turning Point or Equivalent Potential
methods, combined with a Poisson solution
provide self-consistent solutions for both the
charge density about a spherical probe and the
probe current.

The plot shown here, [from Laframboise,1966] was
computed with the Equivalent Potential method,
for an isotropic unmagnetized Maxwellian plasma
with equal ion and electron temperatures .

The Ro/λD  = 0 curve represents the OML limit.

The ‘other’ crossing curve delimits the regime for
the appearance of an absorption radius and thus
the beginning of the Space Charge Limited
collection,
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Magnetic Field Limited Collection
The Parker-Murphy Theory

Parker and Murphy [1967] derived a rigorous limit on
the distance from which a charged particle may be
collected across a magnetic field, B.

For a sheath that is symmetrical about the magnetic
field, B = Bz , the z component of a charged particle’s
canonical angular momentum Lz ,  will be conserved.

The theory is a highly regarded standard for evaluation
of both theoretical and experimental results.

It is also difficult to observe in space.
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Magnetic Field Limited Collection
SPEAR I   Results

POLAR and NASCAP-LEO adhere to Parker-
Murphy limit for symmetric collection

•No mystery with full geometry models

•Similar results from CHARGE-2B

•Agreement with no flux tube depletion!

       Katz, et al., JGR, February 1989

POLAR Code Simulation

The SPEAR I (Space Power Experiments Aboard
Rockets) measured electron collection from a
near stationary HV probe with no electron beams.

•Good agreement with 3D steady state
simulations (classical magnetic limiting)
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 The  Presheath and
Bohm Sheath Criterion

Consider an absorbing sheath.

The repelled species has a density given by a (very
good) Boltzmann approx.,  Nr(Φ) = No exp(Φ).
If Φs = 0 on the sheath edge,  Nr(Φs) = 1.

The attracted species has only the ingoing half of the
distribution. If Φ = 0 from the edge to ∞,  Na (Φs) = 1/2.

Outside the sheath, we should have quasi-neutrality,
Na ≈ Nr. So it must be that Φs ≠ 0 .

Parrot et al. [1982] have developed a quasi-neutral iteration for Φs to determine:
Φs = 0.49,  Na = 0.61 , and Js = 1.49 Jo in the limit of totally absorbing sheath.

- Assumes no magnetic field and Orbit Motion Limited, OML, collection.

The Bohm sheath criterion [Bohm,1949] states that throughout the sheath, Na > Nr..
- Satisfied by the Parrot et al. theory.
- Must be satisfied by any presheath collection model [Riemann,  1991]
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A Heated Pre-Sheath Model for
TSS  Current  Collection [Cooke & Katz, 1998]
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Reflecting ions create a mild density
enhancement throughout the pre-sheath.
A Bohm stable pre-sheath requires a (nearly)
matching electron density.
Strict magnetization of electrons leads to 1D
continuity and an electron density reduction.
3D OML collection give an enhancement, but
fluctuations are required for demagnetization.
Fluctuations heat a pre-sheath electron fluid.

Assuming a constant density in the presheath, and zero charge density allows
analytic integration of the fluid equations.
We assume a well defined absorbing sheath at the Parker-Murphy radius, RPM .
The presheath electron flux is integrated over the Ram side for an enhancement
over the Parker-Murphy adiabatic limit.:    I = ½ IP-M ( 1 + ( 1 + 2ERam/5To)

½ )
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TSS  Current  Collection
during  EGA  Emission

The early results by Wright et al. [1997]
are show in the figure.

Later collection of all similar data  by
Thompson et al., [1998] clusters well
with the Wright results.

The Thompson enhancement factors
over P-M theory range from 2.2 to 2.9.

The model presented here predicts an
enhancement of 2.5.

I = ½ IP-M ( 1 + ( 1 + 2ERam/5To)½ )
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 Conclusion

•It’s the Spacecharge; maybe an obvious conclusion,
but if one wants to distinguish the interaction of bodies
with plasma from the other effects of charged particles,
the key feature is the spacecharge.

•The classical theories of probes are important tools
for understanding plasma effects.

•However, classical probe theory as an analytical tool
has its limitations and the scientist/engineer must know
the limitations as well as the strengths.
•Numerical simulation is often required.

•There are still many interesting and unanswered
problems which as always, will be best addressed by a
balanced approach with theory, experiment, and
models.
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