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Abstract :

The geosynchronous electron environment is well known to
induce surface as well as internal charging especially during
magnetic active periods. In order to reproduce on ground, the
charging phenomena observed in space, several experiments
were developed at ONERA/DESP. These experiments deal
with surface but also internal charging effects. The
development of a good simulation facility has to be based on a
reference spectrum. For this purpose, a “worst case”
spectrum was produced based on the electron flux variability
measured during more than one solar cycle by LANL
geosynchronous spacecrafts.

1. Introduction

The geosynchronous electron environment is well
known to induce surface as well as internal charging
especially during magnetic active periods. Using more
than one solar cycle measurements with LANL
geosynchronous s/c the electron flux variability has
been studied to define a worst case spectrum. Then to
understand or prevent any s/c charging it is necessary
to reproduce this harsh environment in laboratory. To
do so several facilities have been developed at
ONERA/DESP :

A dedicated facility “CEDRE” was constructed for
the general purpose of electrostatic testing. It includes
geosubstorm environment simulation and associated
instrumentation for characterization of induced effects.
Simulation of the electrons of the geo plasma is
achieved by

In order to study surface and internal charging an
electron source with a “space like” energy distribution
in the range 10-400 keV was developed : “SIRENE” is
dedicated to the study of voltage building on spacecraft
dielectric materials and equipment samples for
geostationary orbit, evaluation of materials properties
and protections, characterization of discharges and
measurement of natural and radiation induced

keV) and compensation of earth magnetic field are also
available.

2. Worst case spectrum definition

Continuous electron measurements at geosynchronous
orbit are now available since year 1976 at Los Alamos
National Laboratory (LANL). The energy range
extends from 30 keV to 2 MeV on spacecraft with CPA
detector on board (launch before 1987) and from 50
keV to 1.5 MeV on spacecraft with SOPA detector on
board (launch after 1989) with a time resolution of 10
seconds [http://leadbelly.lanl.gov/lanl_ep data/]. Based
on this data set we investigate on determining a worst
electron spectrum that can impact a spacecraft during a
geomagnetic storm and induce spacecraft charging.
First, all the data coming from different spacecraft have
been cross-calibrated owing to overlaps in time from
one satellite to the other whereas absolute values are
deduced using CRRES MEA measurements [Vampola
et al., 1992] during a conjunction between CRRES and
LANL 1984-129 on September 3, 1990.

Then scanning all measurements year by year we have
looked at the flux variability as a function of the solar
cycle. The maximum flux values for 30, 250 and 1000
keV electron recorded over each year is reported in
Figure 1. It is found that hard spectrum are more likely
encountered during the declining phase of the solar
cycle. This is consistent with the occurrence of high
speed solar wind stream events due to coronal holes. It
is now well known that such events are very effective
to produce high electron flux levels in the MeV range
[Baker, 1986; Reeves, 1998] for time as long as two
weeks.
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provides an extended energy range and realistic
spectrum to simulate in the laboratory the worst case
geosynchronous environments in terms of internal
charging.

A satellite in geostationary orbit equipped with plasma
thrusters has not only to be qualified for natural
environment but also thruster induced artificial
environment. For this purpose and to study interaction
between in-flight equipment and ionospheric plasma in
case of LEO orbits, a large chamber JONAS was
developed. The chamber can support either a
ionospheric plasma source or a Stationary Plasma
Thruster SPT-50. Surface charging electrons (5-40
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figure 1 : Instantaneous maximum flux over each
year as a function of solar cycle for 30, 250 and 1000
keV electrons.

From this result we deduce a worst case that can be
encountered by a satellite at geosynchronous orbit. The
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highest and lowest flux levels for most energies over
one solar cycle are respectively found 5 and 7 years
after solar maximum (Figure 2). A factor on the order
of 3 is seen between year 5 and 7 in the maximum flux
values. This new worst case model (year 5) is
compared with three other spectrum, denoted as Scatha
22 September 1982 [Reagan, 1983], Kp >5 [ESA
contract] and NASA suggested worst case [NASA
HDBK, 1999]. Scatha 22 September spectrum was
only available for surface charging which can explain
the large differences at high energies. But the other
models are all close to ours, especially at high energies,
the differences being due to calibration procedure.
Superposed on these curves are plotted the intensities
we can reproduce on ground simulation to study
spacecraft charging effects.
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figure 2 : Comparison of the spectrum defined with
our method and 3 other models — superposition with
experimental SIRENE and GEODUR spectra

3. High energy experiments relevance

The purpose of this paragraph is to demonstrate the
pertinence of experiments with extended sources. For
this purpose, we present two experiments performed at
ONERA/DESP :

First example concerns the comparison of two
experiments performed on the same sample of kapton
25um irradiated either with a monoenergetic source of
30 keV electrons or with a polyenergetic source 30-220
keV (old experiment SIRENE).

A schematic view given the principle of this
experiment is presented on figure 3.
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figure 3 : Principle of old-SIRENE experiment

Let’s compare the results obtained on this sample with
both irradiation types (see figure 4).
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figure 4 : Irradiation of a kapton sample with 300
keV electrons or an extended source 30-220 keV

The result shows that a kapton sample (25pum)
submitted to a monoenergetic beam of 30 keV
electrons can reach a surface potential of 3 keV.

The same sample under the polyenergetic beam 30-220
keV never attains this level of charge. This can be
explain by the phenomenon of conductivity induced by
radiation (R.I.C.) since the monoenergetic beam
induces only surface charging and the polyenergetic
beam is responsible to a R.I.C. all through the sample.

The second example concerns an experiment
performed on 2 Teflon samples. These samples were
supposed to have the same thickness (125 pm) .
Nevertheless, their behaviors under polyenergetic
electron beam radiation were totally different as it can
be seen on figure 5.
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figure 5 : Irradiation of two Teflon samples with an
extended source 30-220 keV.
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Since, one sample (A) saturated at a potential of 4 keV
and did not develop any discharge, the second one (B)
reached 10 keV of surface potential with occurrences
of discharges on the surface. A more precise
measurement of the samples thickness showed that
sample A was slightly thicker that sample B. Again,
Radiation Induced Conductivity explain these different
behaviors : Since, the penetration depth of these
electrons was very close to their thickness, one (sample
B) had R.I.C. all trough it and the other one (A),
presented a R.I.C. on a part only of it thickness.

These two examples show the relevance of the
development of large energy range experimental means
able to perform deep internal charging. They are at the
origin of development of a new experiment called
SIRENE (new version). This experiment will be
presented in the following with other set-up developed
at ONERA/DESP. These set-up allow to cover a large
range of charging effects from surface to internal
charging.

4. SIRENE

As it was shown before, there is a large interest in
developing experiments on a large range of energy.

The objective of the new experiment called “SIRENE” is to
cover an energy range of few keV to 400 keV.

This is done with two radiation sources : a low energy (E<35
keV) electron gun and an accelerator Van de Graaff
producing electrons of 400 eV. The monoenergetic beam
given by this accelerator is scattered by a complex diffusion
foil. This complex diffusion foil was defined knowing the
fluxes transmitted by simple foils of different thickness. The
analysis of transmitted fluxes was performed with a specific
detector ERMD (EPIC radiation Monitor Detector) given by
the CESR (Centre d’Etude Spatiale des Rayonnements).

The figure 6 shows a photograph of this set-up.
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figure 6 : photograph of “SIRENE” experiment.

Concerning the sample holder, its capacity is 25 x 25
cm? with a temperature range of -100°C/+100°C. The
characterisation of experiments is given by photography,
current probes and voltage probes.

A good complement of this experiment is GEODUR
set-up whose energy range is 200 keV- 1MeV. Both

spectra of SIRENE and GEODUR are given on figure
2 and compared with different models.

5. GEODUR

The experimental facility GEODUR presents the
following characteristics :

- Sample holder large enough to accommodate several
samples simultaneously.

- Reference environment : this is either a "space like"
electron source (selected as being known to have
produced internal charging/discharging problems in
space) in the energy range from 200 to 1000 keV, or a
classical monoenergic beam (few tens of keV).

- Surface potential and current measurement, discharge
detection capability.

The extended energy range is obtained with a Van de
Graaff 2.7 MeV electron accelerator followed by a double
scattering system.

The figure 7 shows a photograph of the experiment.

figure 7 : View of GEODUR experiment

Two examples of experiments have been selected to
illustrate again the phenomenon of Radiation Induced
Conductivity (R.I.C.). They deal with charging of
Teflon and Epoxy precharged with a monoenergic
electron beam of 20 keV and irradiated with the
extended source of GEODUR. Concerning the Teflon,
two kinds of samples were tested (190 and 350 pm).
As it is seen on figure 8, the phenomenon of induced
conductivity is very important since the resistivity is
reduced by radiation with 3 orders of magnitude.
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figure 8 : Intrinsic & R.I.C. on Teflon precharged with
20 keV (intrinsic) and 10" é¢/cm?> GEODUR (rad; ind.)

The sample of Epoxy tested (325 pm) in the same
configuration (see figure 9) does not behave the same
way and the induced conductivity is not as spectacular
as for the Teflon samples.
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figure 9 : Intrinsic & R.I.C. on Epoxy precharged with
20 keV (intrinsic) and 10" é¢/cm?> GEODUR (rad; ind.)

The previous experiments dealt mainly with internal
charging and Radiation Induced conductivity. We
wanted to complete this paper with other aspects of
charging problems. To answer to the problems of
surface charging, an experiment called CEDRE was
developed. It will be presented in the next part
followed by the chamber JONAS devoted to
ionospheric plasma simulation but also to the study of
interactions between the plasma thruster plume and s/c
equipment.

6. CEDRE

The CEDRE simulation facility was specially
designed for carrying out ESD studies. The charge state
configurations simulated were representative of those
found in space and the instrumentation is particularly
well-suited to measuring the charge potential profiles
induced by the irradiation and to detecting the
discharge transients.

The leading characteristics of this facility are as
follows:

- the residual pressure in the chamber during the
experiments is of the order of 10 hPa,

the electron beam reproduced is quasi monoenergetic,
the energy can be varied between 5 and 40 keV and
the flow between 0.05 and 10 nA/cm?,

it is also possible to obtain electron irradiation with
an Sr90 radioactive source,

the rotating cubic specimen holder can receive
specimens with maximum dimensions of the order of
20x20 cm? on three of its faces, one of which is heat-
regulated between -180 and +120°C,

the discharge transient signals are detected by a
current probe with a pass-band of 300 MHz, the

signal is recorded by a digital oscilloscope at a
sampling frequency of 1 GHz,

- specimen geometry permitting, the profiles of the
surface potential induced by the irradiation can be
defined by means of a probe shifting a few mm from
the surfaces being explored within a range comprised
between + 20 kV,

- the probe's movement range in front of the heat-
regulated face is of the order of 12 cm.

The following measurement means are provided :

- surface potentials or surface potential profiles

- discharge current transients,

- location of discharges (by photographs and video
camera)

- light spectrometry (to identify vaporized species)

A photograph of the experiment is shown on figure 10.

figure 10 : CEDRE experiment.

No example of experimental results are given in this
part and the reader is invited to refer to two other
papers presented during this conference [Levy, 2001]
and [Amorim, 2001]. On these papers, the tackled
subject is secondary arcs on solar arrays which is one
of the main activity developed recently with CEDRE.

7. JONAS

The last experimental mean presented here is called
JONAS. This vacuum chamber is quite large with a
length of 3 m and a diameter of 1.85 m (see figure 11).
It is built with a non-magnetic stainless steel envelope.
A set of several Helmoltz coils is used to compensate
the terrestrial magnetic field (with a working volume of
1,5 m3) or to add a known magnetic field in a given
direction.

A cryogenic pumping system allows the internal
pressure to reach 2 10 hPa after 15 hours. With the
SPT-50 plasma, the pressure is around 4 10-5 hPa. In
the configuration of thruster plasma experiments (with
internal chamber protections and with SPT-50), the
residual pressure is from 1 to 5.107 hPa.
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The chamber is equipped with a plasma thruster SPT-
50 built by MAI (Moscow Aviation Institute)
Laboratory. In order to limit erosion and contamination
problems of the chamber JONAS usually used for
ionospheric plasma simulation, internal walls are
protected by aluminum foils giving a “second skin” to
the chamber.

figure 11 : JONAS experiment.

8. Conclusions

The ONERA/DESP has developed a complete set of
activities around space charging. In one hand, the
method to define a “worst-case” spectrum has been
developed and shown here. In an other hand, the
experiments reproducing “space-like” spectra were
presented. This complete method enhance several
points :

- The interest of define as precisely as possible worst
case spectrum which can be used as a reference in the
development of on-ground experiments.

- The relevance of extended sources experiments in
order to reproduce in-flight surface and internal
charging phenomena.

- The pertinence of these experiments in the
enhancement of phenomena such as radiation induced
conductivity.
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