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Abstract
Advanced measurement techniques for charging in bulk
of insulating materials irradiated by radioactive rays,
especially electron beam or gamma ray, will be
introduced.  Using the techniques, so called PEA and
PIPWP, charge distributions accumulating in the bulk of
insulating materials are measured precisely.  These
techniques are originally developed for measurement of
charge accumulation in insulating materials of high
voltage devices such as cable insulating materials.  On
the other hand, there are many reports for accidents of
spacecraft in space environment caused by the bulk
charge accumulation due to the irradiation of high-
energy cosmic ray.  Unfortunately, there are many
unknown parts concerning to the relationship between
the charge accumulation in bulk of insulating materials
have been left, while the experimentally measurement
of charge distribution in bulk had been difficult.
Therefore authors have tried to apply above techniques
to measure the charge distribution in insulating
materials irradiated by electron beam or gamma ray.  In
this paper, the principle of the measurement will be
introduced at first, then some typical measurement
results will be shown.

INTRODUCTION
In space environment, especially at higher altitude such
as GEO, spacecraft is exposed under high-energy
radioactive rays and/or charged particles such as gamma
ray, electron-beam and protons.  When the radioactive
rays are irradiated to the insulating materials of
spacecraft such as cover glasses of solar battery or heat
control polymer sheets, it is said that the charges
accumulate in the bulk of them and sometimes they
causes to the discharge with serious damage to the
electric devices.  Therefore, it is necessary to investigate
the relationship between the accidents and the
accumulation of charge by irradiation of radioactive
rays.  However, it had been difficult to measure the
charge distribution in the bulk of insulating materials
directly, the mechanism has not been clear yet.  On the
other hand, many advanced techniques for measurement
of charge distribution in dielectric materials have been
developed in a couple of decade [1].  The techniques
have been developed for mainly the measurement of
materials of high voltage devices.  However, it is easy to
apply these techniques to the measurement of the charge
distribution in insulating materials irradiated by
radioactive rays.  In other words, these techniques are
keys to make the mechanism of charging and
discharging process clear.  In this paper, the principles
of these techniques are discussed and typical results are

introduced as an example of applications for the
problems in space environment.

PRINCIPLES OF PEA AND PWP METHODS
The PEA (Pulsed Electro-Acoustic) method is one of
widely used technique to measure the charge
distribution in dielectrics.  The principle of the PEA
method is shown in Figure 1.  Consider a sheet sample
with thickness of d and charge distribution ρ(z).  An
externally applied pulsed electric field Ep(t) is applied
to the sample and induces a perturbation force on each
charge.  This force causes the charge to move slightly.
This movement launches an acoustic wave that is
proportional to the charge distribution in the sample.  A
piezoelectric transducer is used to detect the acoustic
wave and transform the acoustic wave into an electric
signal.  The details of the measurement is described
elsewhere [3].  Since, in the PEA measurement system,
the detector of piezo-electric transducer is completely
shielded and it separated from the sample, we can
measure the charge distribution with low electric noise.
However, the high voltage pulse is applied to the sample
to obtain a sufficient signal, it is difficult in vacuum
environment.  Therefore, it should be used for the
fundamental research works to investigate the charge
accumulation after irradiation at laboratory.

The PWP (Pressure Wave Propagation) method is
another major technique to measure the charge
distribution in dielectrics.  The principle of PIPWP
(Piezo-Induced PWP), which is one of PWP method, is
shown in Figure 2.  The acoustic wave acts as a charge
probe.  The charge moves as the acoustic wave
propagates through it.  This movement causes a change
of surface charge on the electrodes.  The time signal of
displacement current indicates the charge distribution in
the sample.  By measuring the displacement current
between the electrodes, the charge distribution is
obtained.  The details of the measurement is described
elsewhere [3].  Since, in the PIPWP system, the electric
pulse voltage, which is applied to the piezo-electric
transducer to generate the pulsive acoustic wave, is not
so high, this method is applicable to the measurement
under vacuum condition.  Therefore, this method may
be used as a monitor in spacecraft.   However, in this
method, the sensitive amplifier is easily to be affected a
damage by electric noise because the amplifier is
connected to the amplifier.  Therefore, it is necessary to
make some improvement to use it as the monitoring
system in space environment.



Figure 3(a) shows the typical measurement result of
charge distribution in PMMA (poly-methyl-
methacrylate) measured using PEA method.   The
thickness of PMMA is about 500µm.  The measurement
was carried out under 2kV dc voltage applied to
PMMA.  Under this measurement condition, there is no
charge accumulation in the bulk, but only induced
charges are observed at the interface between electrodes
and PMMA.  The electric field distribution calculated
from the result of charge distribution is shown in Figure
3(b).  Since, there is no charge accumulation in the bulk,
the electric field in the bulk shows a constant value of
about 40 kV/mm, which is equal to the theoretical value
of average electric field generated by applied voltage.
Figure 3(c) is the electric potential distribution
calculated using the electric field distribution shown in
Fig. 3(b).  It is clear that the value of potential at
position of 500 mm is 2 kV, which is equal to the
applied voltage.  As shown in Fig. 3, it is clear that the
quantitative measurement is possible using the PEA
method.  Figure 4(a) shows the typical measurement
result of charge distribution in PMMA measured using
PIPWP method.  All of measurement conditions in this
experiment are the same to that of results shown in
Figure 3.  It is clear that the charge, electric field and
potential distributions shown in Figure 4 are similar to
the results shown in Figure 3.  It means that both of
measurement methods can be applicable to the
measurement of charge distribution in the bulk of
insulating materials.
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Figure 4. Experimental result using PIPWP method
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RESULTS AND DISCUSSION
Gamma ray irradiated LDPE
Figure 5 shows the charge accumulation process in γ-
irradiated LDPE (Low-density polyethylene) under dc
voltage stress.  The charge distributions were measured
using PEA method.  The thickness of LDPE is about
630 µm and the applied voltage is 15kV.  The sample
was irradiated by γ-ray from 60Co source with dose rate
of 12Gy/h and total dose of 2.4 kGy in air atmosphere.
Before voltage application, no charge was observed in
the bulk.  After voltage application, however, the
positive charge appeared near cathode, then it
broadened towards the anode.  Finally, the change of the
charge distribution becomes to be saturated.  Figure 6
shows time dependent charge distribution under short
circuit condition after voltage application.  The positive
charge near cathode decreased gradually, and positive
charge appeared near anode.  To analyze the charge
accumulation and decay process, we assume a simple
model shown in Figure 7.  Consider electrons and parent
positive ions with density ρ0, which is escaped from
recombination, remained in γ-ray irradiated LDPE with
thickness of l.  Here, we assume

if dc voltage is applied to this LDPE sample, only the
electrons are mobile, and there is no injecting charge
from electrode.  These assumes are reasonable judging
from our experimental results described in the report
[4].  When some of the electrons are drifted and swept
out into an anode by the applied dc voltage, some of
positive ions become observable.  In such a case,
apparent positive charge distribution appears from
cathode side and the positive charge distribution spread
towards the anode side.  Details of analysis model are
described in elsewhere [5].  Figure 8 is a time
dependence of the electric field at cathode interface.
The calculated curves in Fig. 8 are obtained by giving
the value of mobility obtained from experimental value.
Here, three curves are calculated for example.  Judging
from the characteristics of curves, we can estimate the
value of the mobility.
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Figure 5.  Charge distribution in γ irradiated
         LDPE under dc voltage application
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Figure 6.  Charge distribution in γ irradiated
         LDPE under short circuit condition



Electron beam irradiated Kapton®
Figures 9 and 10 show the charge distribution in
Kapton® irradiated by electron beam with acceleration
energy of 75 and 100 keV, respectively.  The charge
distributions were measured after irradiation using
PIPWP method.  The thickness of the samples is about
135 µm.  The electron beam is irradiated from right
hand side in the figures.  It is clear that the injected
electrons are accumulated in the middle of the sample as
shown in Figure 9.  On the other hands, the injected
electrons are accumulated near left side electrode when
the acceleration energy of electrons are 100 keV as
shown in Figure 10.  It is clearly shown that the
penetration depth depends on energy of the electron-
beam.  Figure 11 shows the decay process of the
accumulated electrons in the bulk of the sample under
short circuit condition.  The result was obtained
measuring the charge distribution following the result
shown in Figure 10.  It is interesting that the injected
electrons remain in the bulk for long time.   Even a
week after irradiation, the charge distribution still stays
in the bulk of Kapton® shown in Figure 11.  Judging
from our experimental experiences, the accumulated
charge in Kapton® tends to stay for long time.  As it is
generally well known that the Kapton® is widely used
for an insulating material in space environment because
of its high performance of dielectric and mechanical
properties at high temperature.  Therefore, it seems to
be important to investigate the charging properties of
Kapton® under cosmic rays is important.

Electron beam irradiated PMMA (Measurement under
irradiation)
As shown in above terms, the charge distribution in
dielectrics after irradiation of radioactive rays is
possible to measure using PEA or PIPWP method.
However, it is necessary to measure the charge
distribution under irradiation when we would like to
have a monitoring system for spacecraft.  Therefore,
authors attempted to develop a new design of a system
to measure the charge distribution under electron beam
irradiation.  Figure 12 shows a schematic diagram of the
newly developed apparatus for a real-time measurement

system under radioactive irradiation.  In an ordinary
system, the sample is set on the grounded metal lower
electrode and the signal is detected from the top
electrode [3].  On the other hand, the new apparatus
must have a window for the irradiation of the
radioactive rays to the sample.   Therefore, a window is
made on the topside of the apparatus as shown in figure
12.  However the room for the sample should be
completely shielded to reduce the noise from outside.

Figure 11.  Decay of charge distribution in
      e-beam irradiated Kapton (100keV)
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Figure 10.  Charge distribution in e-beam
        irradiated Kapton®  (100keV)
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Figure 9.  Charge distribution in e-beam
        irradiated Kapton®  (75keV)
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Therefore the sample has an evaporated aluminum
electrode on the topside surface, and it is connected
tightly to the grounded flange of the window.  To obtain
the electric signal from the bottom side of the sample, a
glass plate is inserted between the sample and the piezo-
electric device.  This glass plate is used to isolate the
bottom side of the sample from the grounded level.  As
the aluminum electrode is evaporated on the bottom side
of the glass plate for the shielding, the sample is
completely covered by the grounded shield.  The glass
plate also has an evaporated electrode on the topside
surface and it is connected to the detecting amplifier.

To generate a pressure wave, a pulse voltage is applied
to the piezo-device.  In this experiment, the PVDF film
with 9 µm thick was used as piezo-device.  The pressure
wave generated at the piezo-device propagates through
the glass layer and then it arrives at the sample.

To reduce the noise, the signal is averaged using the
oscilloscope.  The averaged signal is transmitted to the
computer and then the charge distribution is calculated
using the averaged signal with the adequate data
processing and the calibration processes [6].  Since the
pulse generator and the oscilloscope are controlled and
synchronized each other using the computer, the charge
distributions are measured automatically within the
period of 10 seconds.

The electron beam irradiation was carried out in the air
using the EC300/30/30mA (Iwasaki Electric Co. Ltd.,)
with the energy of 230 keV and the current of 10
mA/cm2 for 5 minutes.  Figure 13 shows a diagram for a
setup of electron beam irradiation.  The electrons are
accelerated in the vacuum chamber and they come down
through the titanium foil of 12.7 µm thick.  After
passing through the foil, the electrons arrive at the
surface of the sample through the air gap of about 5 cm.
Because the energy of the electrons are reduced during
the passing through the foil and the air gap, the actual
acceleration energy of the electrons which arrive at the
sample surface are expected to be lower than 230 keV.
The main apparatus is put into the shield case.  The
diameter of the irradiation window of the electron beam
source is 30 mm and that of the main apparatus is 6 mm.
A titanium shielding foil covers the main apparatus
except for the area of the irradiation window.

The measurement was carried out with the period of 30
seconds for 5 minutes during electron beam irradiation.
After the irradiation, the decay process of the charge
distribution was also measured under short circuit
condition with the period of 30 seconds for 30 minutes.
The electric field and potential distributions were
calculated using the obtained charge distributions.

Figure 14, 15 and 16 show the changes of the charge,
the electric field and the potential distributions in
PMMA of 510 µm thick during the electron beam
irradiation.  The results shown in these figures are
obtained at 30 seconds before the irradiation and every
1-minute during the irradiation.  Within 1 minute after
start of the irradiation, no remarkable peak was
observed in the charge distribution.  After 1 minute
from the start of the irradiation, a negative peak
appeared at the depth of about 200 µm from the
irradiation surface.  The peak height gradually increased
during the irradiation and finally it reached the value of
about –33 C/m3.  Judging from this result, the deepest
position of the electron beam penetration seems to be at
315 µm from the irradiation surface.  It means that the
area of left-hand side of the position at 315 µm in this
figure is non-damaged area by the electron beam
irradiation.

The electric field distributions shown in figure 15 were
calculated using the charge distributions shown in figure
14.  It is clearly shown that the direction of the electric
field distribution is separated into two areas.  The areas
of the left and right hand sides in the figure 15 are the
positive and the negative electric fields, respectively.
Each border seems to be located near the peak of the
charge distribution shown in figure 14.  The negative
electric field gives a force towards the right-hand side to
the injected electrons.  In other words, the negative
electric field works as a return force for the injected
electrons towards the irradiation surface.  The increase
of the negative electric field might cause the saturation
of the increase of the charge distribution shown in
figure 14.  The maximum of the negative electric field is
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about 990 kV/mm near the vicinity of the irradiation
surface.  In a former report, the authors suggested that
the mobility in the irradiated area is higher than that in
non-irradiated area [7].  Since the area where the
electrons passed through may be damaged by the energy
of the electrons, the mobility in the damaged area must
be higher than that in the non-damaged area.  Therefore,
it may be easier for the injected electrons to return
towards the irradiation surface rather than pass through
the non-damaged area according to the positive electric
field.

Figure 16 shows the electric potential distribution
calculated using the electric field distribution shown in
Figure 15.  Each potential distribution shows the peak
near the peak of the charge distribution shown in Figure
14.  The maximum of the potential is about 16.8 kV.

Figure 17 shows the decay process of the charge
distribution after electron beam irradiation.  Within 10
minutes after the irradiation, the peak decreased to the
half value of the initial.  It is found that the peak
gradually shifts towards the left-hand side with the time.
The right-hand side in this figure may be the damaged
area and the mobility in this area is expected to be
higher than that non-damaged area.  Since the electrons
are expected to escape from the bulk toward the
irradiation surface, the decrease of right-hand side of the
peak should be faster than that of the left-hand side of
the peak.  This may be the reason that the peak shifts
towards the left-hand side gradually.  A similar
phenomenon of the peak shift was observed in the decay
process of the space charge accumulated at the interface
between two different layers [8].

CONCLUSION
Advanced measurement techniques, so called PEA and
PIPWP methods, for charging in bulk of insulating
materials irradiated by radioactive rays, especially
electron beam or gamma ray, are introduced.  Many
results suggest that the techniques are effective to
investigate the bulk charge distribution in dielectric
materials exposed by high-energy radioactive rays.
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