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ABSTRACT/RESUME.

The effect of the potential and charge on particles approaching a conducting surface in
space is examined for close proximity immediately prior to contact.  Induced fields, which
may lead to currents prior to contact, have been calculated and shown to exceed electrical
stress limits of common materials.  Relationships for the capacitance and field in this region
have been established and simulated in Simion software for a smooth and a roughened
surface.  In the laboratory, electrostatically charged spheres have also been dropped on to a
detector surface in vacuo to quantify the induced charge on approach to a space-borne dust
detector of the Ulysses class and to investigate pre-contact discharge.  This has been
demonstrated and the effect measured; both ions and electrons from the pre-contact
discharge have been measured at velocities lower than thresholds for ion liberation by
shock desorbtion or cratering.  For satellite approach, and contact, the mechanism could
lead to frequent micro-discharge initiation from ambient space debris associated with the
same satellite or e.g. in the Space Station environment.  Locally generated debris such as
paint flakes [1] would be encountered at well below the threshold velocity of impact
damage from the general space debris population or from meteoroids.  Relationships for the
field and capacitance for approaching particles are presented.

1. INTRODUCTION.

The charging of micro-particulates and of satellites in space is a universal phenomenon; sharing a common
environment, the two classes of “particle” differ only by scale – microns or metres typically.  Even in the same
environment, differing electrical behaviour may result from the nature of the differing surfaces and hence the approach
and contact of microparticles will, in general lead to a charge exchange.  Indeed, even if the potentials are the same at
large separation distances, their approach will lead to unequal potentials by virtue of the surrounding space charge
distributions (Debye shielding [2]) and the change in capacitance of and between the two bodies.  In general a charge
exchange will be inevitable and we therefore examine some consequences of this.  This charge exchange may lead to a
discharge in the near vacuum of space, by electron or field emission; in a conductor, this will be preceded by the
formation of induced charges which redistribute themselves as the approach distance decreases; if the field strength is
exceeded, particulate or satellite target material can be vaporised or ionised (the auto emission effect proposed by
Sysoev et al. [3].  This leads to opportunity for detection, by analysis of the ions, but at higher velocities this is followed
closely by the liberation of matter in various states by the cratering process [4].  Relationships between the different
mechanisms of charge liberation at differing velocities, which is of interest to detectors in space [4], are examined in the
simulations.  Autoemission may especially affect the calibration of these detectors where the microparticles are highly
charged by the acceleration process.  Results of low velocity tests are applicable to satellite impacts where such
discharges and impact plasma generation may trigger the discharge of pre-existing charge distributions or high current
sources on power buses.

2. PARTICULATE POTENTIALS IN SPACE.

The existence of a potential on a body in a radiation environment and one of active charge distributions is inevitable.
For satellites, the potential is usually not of high consequence and, indeed, takes care to be measured.  Because of the
isolation, discharge of the overall charge cannot take place and surface field effects are small even for the high
potentials found in Geostationary space.  These may reach some minus 20 kV in the plasma sheet for microparticles, as
in studies recently reported by Graps [5]; in more diffuse interplanetary space this relaxes to some few volts positive in
sunlight.  The high potentials in the Geo-environment, however, can lead to forces sufficient to disaggregate and
fragment typical meteoroids.  This was proposed following earlier detection of swarms of meteoroids in near-Earth



space [6] on the HEOS II micrometeoroid detector in a high eccentricity Earth orbit; if the disaggregated particles are
recharged to the same potential this will lead to a cascade down to very small sizes until a higher binding strength for
the sub-units is reached [7].

Although, for satellites, the net charge does not affect the orbital motion we find for small particles that the interaction
with the geomagnetic field competes with gravity and other forces.  The time constant associated with establishing
equilibrium potential is inversely proportional the particle diameter and hence whereas a satellite stabilises in a matter
of seconds, for a micron particle this may typically approach an entire orbit in GEO space.  Orbital studies are reported
for space debris particulates in this environment [7] and in same contract the effect of internal charging and bootstrap
charging is examined.  Here, we restrict ourselves to take a first look at the likely consequences of the induced charge
and current for a particle approaching a conducting satellite surface.  The charge on the particle remains constant during
approach, but is accompanied by a change of capacitance of the particle varying from the free space self capacitance
(4πε0 times the particle radius r(m)) to that of a mutual capacitance between the particle and its induced image charge.

3. PRE-CONTACT CHARGE RELATIONSHIPS.

In the schematic of Fig. 1, the situation for a charged particle approaching a conducting surface, because the original
charge on the particle is retained as the distance decreases the surface potential falls below the free space value due to
the increasing capacitance between the particle and its image but the field between the particle and plate increases to
high values.  The potential therefore can be found, and the maximum field at close distances if we know this
capacitance relationship.  Although unable to find a ready relationship for all distances one of the authors [8] used the
method of images to solve the potential at arbitrary distances and calculate the capacitance.  The result, shown in Fig. 2,
shows this value which varies from the self-capacitance at large separations (4πε0r) to an increasing value at close
separations.  But the form of the increase at close distances increases only logarithmically with s and, because of this
slow increase, the field between the particle and plate will always increase to a high value prior to contact.  The
maximum field at close distances is calculated as the sphere surface potential divided by the separation distance.  At
close distances a fit through the capacitance-separation distance yielded an equation which fitted (to within 1 percent
error) a relationship as shown in Eq. 1.
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The surface potential V, compared to the free space potential V0 is similarly given by Eq. 2.

∞→=













+







=

s
r

V
V

s
r

V
V

at   where

1ln

0

2
1

0

(2)

The approximate relationship in Eq. 2, which we hope to extend to a full functional relationship, permits an equation for
the maximum field to be found, namely Eq. 3.
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At arbitrary distances (as shown in Fig. 2) we have calculated, by the method of images the capacitance for a 100
micron sphere as a function of its separation s from a plate; results are tabulated in Table 1 and reinforce the weak
dependence on separation distance from the plate at close distances.  Even at separation 10-5 of the 100 micron radius
particle, namely 10-9 m, the capacitance has increased to only 6.6 times the free space value.  Clearly we are talking
here of separations approaching atomic scale, and real factors such as surface roughness enter to modulate the ideal



results calculated. The field will nevertheless reach very high values and immediately prior to contact would be
109 V m-1 even for a particle charged initially to only 5 V.  The opportunity – or perhaps the inevitability – of pre-
contact discharge by autoemission is clearly illustrated by this example.

Table 1.  Capacitances between a sphere and plate for separation s relative to sphere radius r.  A maximum of
some 7 times the free space value is reached even for separations as close as atomic dimensions. Surface
roughness will affect these results and has been studied in simulations.

s (m) s/r C/C0 Emax V m-1

(V0=5 V)
Emax V m-1

(V0=1000 V)
10-9 1×10-5 6.658 3.00×109 6.01×1011

10-8 1×10-4 5.292 3.78×108 7.56×1010

10-7 1×10-3 4.379 4.57×107 9.13×109

10-6 1×10-2 3.238 6.18×106 1.24×109

10-5 1×10-1 2.156 9.28×105 1.86×108

10-4 1 1.341 1.49×105 2.98×107

10-3 10 1.048 1.91×104 3.82×106

10-2 100 11.555 1.99×103 3.98×105

10-1 1000 1.000 2.00×102 4.00×104
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Fig. 1. Schematic of a charged particle approaching a conducting surface.  The original charge on the particle is retained
as the distance decreases but the charge redistributes itself, together with image charge redistribution on the target
surface.  The potential falls below the free space value due to the increasing capacitance between the particle and its
image but the field between the particle and plate increases to high values.  The autoemission curent is illustrated as I;
the maximum field is Emax=V/s.  A pre-contact discharge may be initiated by electron emission leading to local heating
and vaporisation of the target or particle.  The relationship for capacitance at close distances is charted in Fig. 2.



Charged Sphere (100 microns) and Grounded Plane Surface: Variation of Capacitance with Distance
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Fig. 2.  Capacitance between a spherical particle of radius r and smooth plate, shown as a function of the logarithmic
separation distance, s.  This varies from the self-capacitance at large separations (4πε0r) to an increasing value at close
separations.  The form of the increase at close distances is logarithmic with s and because of this slow increase the field
between the particle and plate will always increase to a high value prior to contact.  Values are shown in Table 1.

4. LABORATORY MEASUREMENTS WITH CHARGED MICROSPHERES.

Spheres of 1 mm were dropped in gravity from a height of some 0.5 m, first in air and then in vacuum.  The spheres
brushed against a small needle held at potentials up to 5 kV at release.  The charge on the particles was measured by
allowing them to pass through a Faraday cylinder; from the pulse, the velocity and the arrival time on the target was
computed to associate induced effects with the position of the particles.  Various potentials were used but the results
here refer to 5 kV charging potential.  A matrix of varying conditions was explored to examine the cause and effect of
the signals measured on the target and the ion collector of the Ulysses type dust detector.  The target comprised a
hemispheroid of diameter 0.5 m at ground potential and was biased with minus 350 V on a charge collector near the
radius of curvature.  Collection of most of the ions liberated at the target is achieved and electrons (of approximately the
same value because of overall charge neutrality) are detected at the target before the ion signal.  Measurements are
achieved using a high impedance charge amplifiers.  Results, shown in Tables 2 and 3 demonstrate the autoemission
effect at low velocities.

Table 2.  Charge values measured during the drop of 1 mm radius spheres, electrostatically charged by a 5 kV
contact, on to a Ulysses type detector at a velocity of approximately 2 m s-1

Signal Average charge
(Coulombs)

Particle electrostatic charge (from
5 kV)

3.58×10-10

Impact detector 3.51×10-10

Charges measured on Ion
collector:
  Ion collector plasma
  Ion collector induced charge

1.27×10-13

1.10×10-14



5. SIMULATION.

Using SIMION simulations were made to map fields and potentials for the situation of charged spheres at varying
distances from a conducting plate.  The surface charge corresponding to the induced image was mapped and integrated
to check overall charge conservation.  The geometrical configuration of the Ulysses detector was also entered into a
suite and the induced charge on the target established at differing distances form the target and for differing distances
from the central axis of the detector.  Results showed, with due consideration of the amplifier characteristics of the
flight detector, that pre-induction could trigger the charge measurement and also influence the velocity measurements
made in Geostationary space aboard the Express II satellite with the Ulysses type GORID detector [9].  Full results of
the simulations are reported [7, 8] and also the effect of internal charging and bootstrap charging.

Table 3.  Parameters tested for autoemission in charged particle drops; induced signals are caused only by
particle charges and ionisation signals only if the particles are charges and an applied field extracts the charge by
separation of the ions and electrons.

Condition Pre-sensing
charge
sensor

Ulysses
impact

detector
target

Ulysses Ion
collector

Needle
voltage 0 kV ..

No No No

.. Ion voltage
0 kV

No No No

Needle
voltage 5 kV ..

Yes Yes
Induced
Signal

.. Ion voltage
0 kV

Yes Yes
No ionisation
signal

Needle
voltage 5 kV ..

Yes Yes
Induced
signal

.. Ion voltage
350 V

Yes Yes

Intermittent
(small)
ionisation
signal

6. CONCLUSIONS

By analysis, by simulation and by laboratory measurements we have quantified the effect of induced charge for charged
spherical microparticles approaching a conducting surface.  We find electrostatic pre-induction can influence detection
in space borne detectors; this is unlikely to be of significance in interplanetary space but could be important in near
Earth and Geosationary space and, particularly, in the locally generated space debris environment associated with every
satellite.

Bootstrap charging has been found to be insignificant because it is readily discharged by particle rotation.  Internal
charging has been characterised but, in terms of the net behaviour of particulates and impact processes, it has no
significant consequences because it readily attracts surface charge to negate its effect.

Because of the slowly increasing capacitance between the particle and the approaching surface, the electric field in the
gap increases to very high values even for low potentials on the particles.
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