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Abgract
We dtarted about fifteen years ago and continue until now

the research on spacecraft charging from the viewpoint of

improvement of rdiability and misson lifetime of sadlite in
gace environment.  The fallowings are involved in the
activity:

(1) Experimenta investigation on the charging and discharge
characteridics of saelite surface materids by dectron-
beam irradiation smulaing hot plasmain space.

(2) Anayticd smulation of dectron-beam induced charge-up
phenomenon of inqulaing meterias

(3) Devdopment of the on-board surface potentid monitor
and measurement of the surface potentias of insulating
materiasin space environmen.

(4) Deveopment of the mitigation technology of Spacecraft
charging.

(5 Experimenta investigation on the interactions of satellites
with plasmasimulating low Earth orbit environmert.

1. INTRODUCTION

Many sadlites such as communication sadlites,
broadcaging satdlites and meteorologicd satdlites arein Earth
orbits  These satdlites have the duties to work normally in a
tenuous charged particle environment.  However, the charged-
particle environment hgppens to endanger to the performance
of the spacecraft sysems under certain conditions profoundly.
Egpecidly, low-enegy plasma in the charged-paticle
environment causes “spacecraft charging” and is probeble to
induce ESD (dectrodetic discharge) on the satdlite  The
ESD causes mdfunctions or anomdies of the on-board
electronics and/or the eectric power sygems, or  degradation
of the suface materids [1-3]. These influences must be
minimized to achieve high rdiability and long mission lifetime
of the gpacecraft systems.

Our company, Mitsubishi Electric Corporation, has Sarted
the research activity from the middle of 1980's in recognizing
the importance of development of mitigation technology asthe

leading company for gpacecraft manufacturing in Japan in

cooperation with NASDA and so on.

The research on spacecraft charging has been carried out
widdy asfollows:

(1) Expeimenta invegtigation on the charging and discharge
characteridtics of sadlite surface materids by dectron
beam irradiation Smulating hot plasmain space.

(2) Anayticd dmulation of dectron-beam induced charge-up
phenomenon of insulaing materias

(3) Deveopment of the on-board surface potentid monitor
and messurement of the surface potentids of insulating
materialsin space environmentt.

(4) Deveopment of the mitigation technology of Spacecraft
charging.

(5) Experimenta investigation on the interactions of satellites
with plasmasmulating low Earth orbit environment.

Inthis paper, we will review the outlines of our research.

2. EXPERIMENTAL INVESTIGATION ON SURFACE
CHARGING DUE TO ELECTRON-BEAM IRRADIATION

Among the charged partidesin gpace, dectronshavelarge
influence on the charging of spacecraft.  Electron-beam
irradiation method has been used to study the charging and
discharge phenomena of the satdlite’s didectric materids,
egecidly under the smulated conditions of geomagnetic
subsorm [4].  The method has been useful for understanding
the processes of differentid charging phenomenon.

Sadlite suface materids such as theema  control
meterids were irradiated with mono-energetic dectron beamin
the vacuum chamber evacuated to the pressure of 1x10° Torr.
The dectron beam was controlled &t the ranges of the energy
(E) between 15keV and 45keV and the current density (J)
between 0.1nA/cn? and 16nA/cn?.  The electron-bombarded
areaof each sample was 19.6cn? (50mmiin diameter).

By irradiaing eectron-beam, the currents flow through
the sample (bulk current) and dong the surface of the sample
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(surface current). The bulk current was measured by an
electrometer (Advantes TR-84M) and the surface current was
conducted to the grounded sample holder. The surface
potertia (V) of the sample was measured by a non-contact
dectrodatic voltmeter with an dectrogatic probe (TREK

340HV and 5031S) [4-6].

Figure 1 shows the dectronbeam current densty
dependences of surface potentid of 25y m thick Teflon FEP
(fluorinated  ethylene propylene co-polymer) film as a
paameter of dectron energy. In this expeiment, the
irradiation time (T)) was 60min. In the case thet discharge
occurred during T;, the surface potentid &t thet time was plotted
as black symbol.  The surface potentid is proportiond to the
beam current denity in case of J, lower than 0.1nA/cn?. On
the other hand, in case of J, larger than 0.1nAcn, the surface
potential gradualy increases and saturates with J, in E=15keV.
In dectron irradiation with energy larger than 15keV, it was
controlled by discharge on the suface  Other surface
materias show the different V, — J, characteridics. As one
example, the characteridtic of Kgpton (polyimide) is shown in
Fg.2. Thedopeof V to J,isabout 0.5 and surface discharge
was not observed during T, Figure 3(a) shows the eectron
energy dependence of Vs in cases of Teflon and Mylar PET
(polyethyleneterephthalate) and Fg.3(b) shows those in cases
of Kgpton films with different thickness From Fg3, the
followings are obtained:

(1) Surfacepotentia dependson eectron energy.

(2 In low-energy region, surface potentid increases with
increese of dectron energy. By contraries, in case of
high-energy region, the surface potentid decreases with
eectron enargy. That is the surface potentid has the
pesk at some e ectron energy.

(3) The pesk of the surface potentia and its eectron energy
increese with the thickness of thefilm.

(4) Under the same condition, the order of three materidsin
urface potentia isFEP>PET>PL.
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3. ANALYTICAL SSIMULATION OF ELECTRON-BEAM
INDUCED CHARGE-UP

In order to andyze the charge-up characteridics of
insulating films due to dectron-beam irradiation, we used two-
dimendona and axis-symmetric modd showninFg4. How
chatisds shownin Fg5. The andyticd results are shown
inFg.3inthebrokenlines,

Also we conducted the smulation of charge-up dynamics
in Teflon film during eectron-beam irradiation by Monte Carlo
method [7]. The physcd modd of the 0 1leV — 35keV
electron scattering in that film has been used to cdculate the
average charge digribution ingde Teflon films  The dectric
field and potentid as afunction of the injection time have been
caculaed from Poison's equations  Fgure 6 shows the
digribution of ectric charge indde Teflon film irradiated with
20keV dectrons
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4. MEASUREMENT OF ELECTROSTATIC CHARGING
IN SPACE

We developed a potentid monitor to measure the surface
charging potentid on the insulating materid due to charged
patidesin gpace.  The monitor was fird ingaled on 3-axis-
stahilized Engineering Test SatdliteV (ETSV) [8].

The block diagram of the monitor is shown in Fg.7.
The monitor congsts of senang part (POM-S) and dectronic
circuits(POM-E).  Andectrogatic probe (Monroe 1017S) is
used inasendng pat. A sampleis st on the probe housing
showninFig.7. Thesamplewith metalized backing is pasted
on the board with conductive adhesve. The dectric fidld
between the charged surface and the probe head is measured
through the hole of a diameter of Imm set inthe board. The
output voltage of the monitor is recorded as voltage.  The
relation between the output voltage and the surface potertid is
calibrated.

Figure 8 shows the profile of charging potentid of the
dlvered Teflon on October 28, 1987 as one example of the data
obtained on ETSV. The negaive increase of the surface
potential was observed from 14UT (Universa Time) to 20UT.
As the potentid monitor was located on the south misson
pandl, the potential monitor was casted by sunlight on October
28. In gpite of the sunlit condition thet we can expect photo-
eectron emisson from the surface, the negative increase of the
surface potentid was obsarved.  This phenomenon is
accounted for by taking into condderation the shadows caused
due to the L-band antenna reflector and/or the solar aray

paddle.
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5 MITIGATION TECHNOLOGY OF SPACECRAFT
CHARGING

From the results of the ground Smulaion experimentsand
the space experiments, we recognized the necessity of
uppressing differentid charging on a satdlite to achieve high
reliability and long lifetime for future Spacecraft.

For this purpose, we have sudied two methods to
uppress surface charging on insulating materia sfor gpacecraft.

One method is coating a conductive layer on insulaing
materid.  We confirmed thet using ITO (Indium Tin oxide) as
a conductive layer is effective on suppresson of surfece
charging by meansof dectron-beam irradiation [4].

Anocther method is plasma gection from sadlite [9).
Figure 9 shows the schematic diagram of the experimentd
sup.  In the experiment, a large space chamber of our
KamakuraWorkswasused.  The Szeisabout 4min diameter
and about 9minlength.  The cubic (40x40x40cn) metal case
asamodd of satellite body was equipped with an dectron gun
inthechamber. A neutrdizer for ion thruster and the potential
monitor as mentioned above were perpendicularly set on the
two ddes of the metd case. The neutralizer was a hollow-
cathode type plasma source that was used to maintain the
potertial of satelite even during the operdtion of the ion
thruger. A Kapton film with 5mil thickness was st on the
potential monitor asthe test sample.  The length between the
neutrdizer and the Kagpton film was about 50cm.  The

distance between the gun and the Kapton film was about 70cm.
Electron beam wasirradiated to the Kapton film a the pressure
of 3x10°Torr.

Figure 10 shows a typicd example that the neutrdizer
diminated the charges deposted on the Kapton film.  In the
beginning of the experiment, the Kapton film was irradiated
with 3keV dectron beam and the surface potentia reached to —
2kV. After the removd of irradiation, Xe gas was introduced
to the neutrdizer a the flow rate of 24sccm. The pressurein
the chamber became about 5x10°Torr.  Then the neutrdizer
was opearated and Xe plasma was generaed from the
neutrdizer & 14.5min.  The surface potentid on the Kgpton
film became OV without the occurrence of discharge on the
sample  From the teg, the neutrdizer is conddered to be one
of the promisng ways to diminate surface charging on
insulating materids.
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6. EXPERIMENTAL INVESTIGATION ON LEO PLASMA
INTERACTIONS

The power cgpability needed for space systems is
increasing as hig gpace programs such as pace dation, gpace



platforms, space factories and solar power satdlites are
envisoned in low Earth orbit (LEO). The operating voltages
higher than used to date (lower than 100V) are under
congderation from the viewpoints of minimizing the weight of
wire-harnesses and the dectric power loses It will dso
become necessary to supply higher voltages to high-valtage
payloads such as microwave generators and electric propulsion
sysdem directly. However, power supply from high-voltage
solar aray arises the following problems originating from the
interactions between the solar array and space plasma:
(D) Current leskage through the surrounding gpace plasma
(2) Ardngdischarge.
These problems are serious, particularly in LEO, the dtitudes
around 400km where the plasma dengity is much higher thaniin
GEO. Thesaeimportant technicd itemsto be overcome for
the congtructions of high-power space systemsin the future.
From these viewpoaints, we carried out the experiments of
plasma interaction with coupon pands of solar aray in the
large space chamber [10]. Figure 11 shows the schematic
diagram of the experimental sgtup.  The plasma source was
capable of generating plasma of dengties from 10*-10°cm® by
contralling the discharge current and the gas flow rate.  This
plasma source utilized Ar gas The coupon pands consdsed
of twenty-five GaAs solar cdls were used as samples  DC
potential upto £ 1000V was applied Sepwise to the coupons
Fgure 12(a) and (b) show the plasma-coupling currents as a
function of DC potertid for pogtive and negative polarities,
respectivdly. The plasma density and plasma temperature
measured with Langmuir probes were n=1x1C°cm® and
kT=11eV. Fromtheseresults thefollowingsare obtained:
(1) In podtive bias to the test sample, the plasma coupling
current increases with DC potentia and at the bias larger
than 100V it abruptly increased, that is” snapover”.
(2) Innegativebias, thedischarge occurred at about —200V.
Therefore, it isimportant to prevent the occurrence of discharge

in case of negdtive bias to gace plasma and we proposed
improved solar array structure as shownin Fig.13.
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Also it is conddered thet high-voltage systems are in the
high-vacuum region in the wake of large spacecraft in LEO.
However, in the wake low-energy dectrons only inject from
spaceplasma. Then we investigated the effect of low-energy
eectronson high-voltageinsulation [11].  Fgure 14 showsthe
DC aurface flashover voltage as a function of insulation
digance  This figure shows that low-energy €ectron
irradiation to the insulator surface lowers the flashover voltage
Then it is necessary to provide countermessures to the surface
flashover even in the wake space.
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Fig.13 Ggp distance dependence of surface flashover voltage.

7. UMMARY

We have caried out the research rdated to “ gpacecraft
charging” for about fifteen years  The achievement of the
research has been gpplied to sadlite manufacturing.  We will
a0 continue the research activity on gpacecraft charging in
order to contribute to high rdliability and long mission lifetime
of future spacecraft systems.
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