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Abstract

ED bare tethers are best systems to deorbit S/C at end of service. For near polar orbits, usual tethers kept
vertical by the gravity gradient, yield too weak magnetic drag. Here we propose keeping tethers
perpendicular to the orbital plane. They must be rigid and short for structural reasons, requiring power
supply like Ion thrusters. Tether tube-booms that can be rolled up on a drum would lie on each side of the
S/C. One boom, carrying an idle Hollow Cathode, collects electrons; the opposite boom's HC ejects
electrons. Special HC arrangements to avoid net magnetic torque are discussed. Power source switching
must revert the current twice per orbit. Tether orientation is kept Thomson-stable by having the system spin
around the tether axis. Also briefly discussed is a second scheme having 4 booms at 90 degrees from each
other and rotating fast in an inertial plane perpendicular to Earth's polar axis.

Introduction

Electrodynamic bare tethers are the best systems to deorbit S/C in LEO at the end of its operational life. The
tether, left uninsulated, collects electrons on some anodic segment. A Hollow-Cathode (HC) plasma
contactor ejects electrons at its cathodic end.

For high orbit inclination i, however, the geomagnetic field B lies near the orbital plane: the drag on
the usual vertical (long, flexible) tethers might be too weak.
A tether perpendicular to the orbital plane would be better oriented. But the tether length 7 might then
need to be short, drag resulting too weak again.

Here we study this new Short ED tether for high LEO orbits at high i. These short tethers need to beat
vertical tethers as well as electrical (Hall, Ion) thrusters. They might result effective for low-mass satellites
only.

Short Tether Concept

The tether drag power is:
Vo *F =9, o |L([7,)0B|=-E, LT

Where 7 is the average tether current, ”_t is an unit vector along the tether making / positive, and

E, =1u,*(v,, O B) istheinduced electric field (£, > 0 for drag)

Take a circular orbit, and the tilted (8, = 11.5°) dipole model for B . Then we have:

Em = Vsat Beq u_t. |-A2i - 2Al jJ

There, i is an upwards unit vector i 0 j =¥ sat / and B., isthefield B at the magnetic equator.

Vsat*
Also, we have
Ay = cosfB, sin i sin@ + sinf3, (cos@cos@ + cos i sin@sing),
Ay = cosfB,cosi - sinf3,sinising,

where & is the anomaly from the ascending node, and d@/dr arises from both Earth and line-of-nodes
rotations.

For current driven by the induced bias £,, L, u, will oscillate with 4,, A,, automatically keeping
E,,> 0. In the vertical tether case, we have i, =i Chign (4,) , yielding E,, / vy B., = U4, For 1 <78.5°,
we have A, >0 throughout, and (average) £, / Vi Bey = cos . Above 78.5°, sign(4,) oscillates. At
i=90°, the average reaches a minimum E,, / Voo B, = sinf3, X 2/7T

This £,, reduction directly reduces power drag, v, F =-F, L T . In addition, there is a indirect

reduction due to Ohmic effects, from the condition T/0A : < E, (0O is the tether conductivity, 4, is its
cross section area). The drag is dramatically reduced in going from low inclination to near polar orbits.



The optimal inclination would require the tether to rotate in orbit, to keep along v OB . For high

sat
i, however, just try a tether horizontal and perpendicular to the orbital plane, #. P ]’sign(Al) , yielding:

Ep ! Veu Bey=2 04,00 average E,, / Vo B,, =sini x4 /77 This is greater than sinf3, x 2/7T by one order of
magnitude.
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Figure 1: (a) Horizontal tether schematics. (b) £,/ vy By vs i for tethers horizontal,vertical, and

optimally rotating in orbit so as to keep along v sat uB

The gravity gradient at the horizontal orientation is compressive, however. This makes the
equilibrium unstable. Also, the tether will need to be rigid and short. This makes it easy to deploy, and free
of the flexible-tether instabilities.

Unfortunately, reducing [ directly reduces the power drag. It also reduces the bare-tether current
({pr U L), and the induced voltage £, L. A voltage source will be needed to drive the current.

Here we propose using a bare boom of length /2, with a HC at end, on each side of the S/C. Such
booms have been validated in space. They can be rolled up on a drum, and become hollow and rigid when
deployed. At every orbital half-period, one boom would collect electrons with its HC off. The HC at the end
of the opposite boom would eject an electron current 7. A source of voltage 1, at the S/C is electrically
switched twice per orbit. This reverses current, and the way each boom works, to keep £, > 0.

Both the Ohmic drop and the ion current to the cathodic boom are negligible. The induced em force
E,L (040 V) is moderately small against 7, (0200 V). The anodic boom bias is then nearly uniform,
AVE @- @, =7V

The bare boom current is /zr = %xgeN o [2e VS /m e where N, is the plasma density, and the
cross section perimeter p should not be too large. State-of-art HC's require very little bias, 7. (4V).) = Ipr
V), with |4V, = 20V << V.

The mass flow rate ina X, -HC is m,. Ol x1scem/ A (1 scem X, = 2.9 kg / year). See table.

The current on the anodic boom varies linearly, I =1 sr X %, resulting in a net oscillating torque,
L*Izp/12x[B-j(j*B)]. (03 %x10° Am% for Iz O1A, L 0200m). A magnetotorquer cannot
provide a balance. Possible ways to regain equilibrium are:

i) Set the HC's at a distance L/ 2V3 from S/C. The ratio I / Iz then drops to 0.539.
i) Use a 3rd HC at the S/C to gject an electron current 2 /7 /3. The ratio / /Ipr then drops to 0.417.

The resulting equilibrium is still unstable. However, note that the moment of inertia 7, around the j

axis is (much) smaller than moments /., =7, around / and V,/v,, axes. If dissipation is ignored,

Thomson equilibrium may then be achieved by means of a spin of angular velovity V around the tether.
Thomson stability requires:



1
-3>1+ I_y % >335 (£ orbital angular velocity).
Dissipation would require imparting a small angular momentum ([J3 Nxm X minute) a number of
times.
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Figure 2: Horizontal tether current and voltage distribution

Comparison to Alternative Systems

The figure of merit for a thruster is the ratio (dedicated mass M) / (mission impulse F7), which should be
low.
For an ion thruster,
My=1+a) T mprop) + W (elec) & (a 00.15, J 0 6 kg /kw):
vy = F/ i 028 km/s; NEFvy,/2 W 005
M, _l+ta vy0 _ 115 {1+ 1.5months}
Fr v nr 28km/ s r

sp

For a vertical tether,

M;=(1+a ”hhc T + Q; X Miether (a,02.5)
Define w=(p/ UEmZ) X F Vs | My, where p is the tether density, and write:

Fl tpe= oL XTI 1, W = Ipe | 1 pe % By sinf, X2/ 1T
Takea L=10km, Al tether; /;, /M ,.=1 A/sccm Xe; 800 km height, and set w = g [ I,.=0.75 (w,
7 /I, — 1 atlarge L).

M, - 1.15 + 13.3months

Fr 230km/s 1x7.5km/s

A vertical tether needs 4 years to beat an ion thruster.

For a horizontal tether,
Mg=Q+a) my, 1 +ptplL + Vil O



F/fhhc:a},ch3/4, a},cEIhc/rhth4Beq/r[
Structural requirements impose conditions thickness # (] perimeter p [ Z* (no buckling). We then have:

M, _ 1+a I Xconstant v, xé

Fr  w,Lx3/4 Fr 3E, LIV, T
Note that the last term is negligible for multi-month thrusting, as in ion thrusters.

For any given mission impulse, A;/F T goes then through a minimum at some optimal length

Lopr. One readily finds that L,,, O (& n" ®, implying that a 2-orders of magnitude jump in F7 just needs
doubling L We find that our tether beats the ion truster overn a narrow L range , around 100 m: Too
short . makes for too large a A,/ FT ratio; too large I requires too large p, degrading bare-tether
collection. At Z =100 m,

M, _ 1+a _ 115

Fr Lx3/4%x5/6  38.4km/s

Because Ft [J Lo,,f, however, missions with a broad range of total impulse are allowed.

minimum a)hc

Conclusions

Bare (boom) tethers perpendicular to the orbital plane are the best systems to deorbit S/C at high
inclination. One tube boom (length 75 - 125 m) + HC would lie on each side of the S/C, spinning for
Thomson stability. Deorbiting times for a 1000 kg S/C would be 1-2 years except at solar cycle minimum.
Structural damping that might break Thomson stability still needs consideration

An alternative scheme would set 4 booms at 90° from each other, rotating in a plane perpendicular
to Earth' polar axis. Note that the rotation axis will precess due to the gravity gradient. Rotation much faster
than the orbital revolution is required to keep precession down. Switching on a contactor each time its tether
becomes anodic might then be hard
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Space Plasma Contactors
(HC types: HC - Ring Cusp, EK - Enclosed Kee

per, OK - Open Keeper)

ORIGIN ACRONYM EXPELLANT MASS FLOW RATE Kg/Year ELECTRIC POWER TYPE COMMENTS
(max. readings) (expellant) (Watts)
USA SEPAC Xe 37.4 Sccm 107.6 > 270 RC Flown on STS-45
“ PMG Xe 150 =~ 43.17 Batteries OK Flown on delta
Rocket
“ ISS Xe 60 17.27 53.8 peak, 36 running EK Planned fur Space
_____________________________________________________________________________________________________________________________________________________ Station
EUROPE STRV Xe 2.0 Sccm 5.8 <20 OK ESA Approved
“ Proel A/300 | Xe 0.5 “ 1.44 38 peak, 7 running EK Engineering model
& Testing
“ “ A/5000 | Xe 3.5 « 10.07 130 < 110 * EK «
“ “ Xe 55 « 15.83 140 < 110 * EK «
A/10000
RUSSIA EPICURE Cs 30 mg/seg 945 2 Kw Arclet Tested in COSMOS
flight
and sounding rocket
“ OKA Cs 30 mg/seg 945 2Kw “ “
“ PROGRESS | Xe 5.5 Scem 15.6 240 peak, 150 running EK | -
“ GPC-1 Xe, A, Kr | -——— |- Not rated EK |
“ GPC-2 Xe, A, Kr | -——— |- Not rated EK |
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