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ABSTRACT

In this paper we report early results from the Floating Potential Probe (FPP) recently installed on the International
Space Station (ISS). The data show that FPP properly measures the electrical potential of ISS structure with respect
to the plasma it is flying through. FPP Langmuir probe data seem to give accurate measurements of the ambient
plasma density, and are generally consistent with the IRI-90 model. FPP data are used to judge the performance of the
ISS Plasma Contacting Units (PCUs), and to evaluate the extent of ISS charging in the absence of the PCUs..

INTRODUCTION

It has been clearly understood for some time (refs. 1,2) that the International Space Station (ISS), by virtue of its high
voltage (160 V) primary power generation system, will have important interactions with the ambient plasma in which
it orbits. For instance, the negative grounding scheme of its solar arrays would cause the entire ISS structure to act as
an ambient ion collector to compensate for the electrons collected by its more positive solar arrays. Models have
shown that, in the absence of any mitigation, ISS structure would float at electrical potentials highly negative of its
surrounding plasma (ref. 3). Such potentials are greater than those that could be stood-off by the anodized aluminum
surfaces on ISS (ref. 4), so that ISS would arc due to dielectric breakdown. These arcs could have consequences
ranging from a steady degradation of ISS surface thermal properties to possibly life threatening currents flowing
through an astronaut's space suit (ref. 5).

In order to control the ISS "floating potential,” a set of Plasma Contacting Units (PCUs) have been installed near the
ISS structure midpoint (ref. 6), and have been operating for eight months now. By emitting a highly conductive xenon
plasma, these PCUs can efficiently emit electrons collected by the solar arrays, and thus keep the ISS structure at
nearly the same potential as its surrounding plasma, so-called "plasma ground." Proper PCU operations have been
shown in ground-based plasma testing to tightly control structure potentials. On-orbit, PCU emission currents and
anode voltages are monitored to help ascertain PCU health. However, in order to guarantee proper PCU potential
clamping, a direct measure of the ISS floating potential with respect to its surrounding plasma was required.

THE FLOATING POTENTIAL PROBE

It was decided by the ISS program to build, fly and deploy on ISS structure (by the mission 4A on which the large
high voltage solar arrays would be deployed) a probe to directly measure the potential of ISS structure with respect to
the ambient plasma. Because of its job to measure the ISS "floating potential," it was dubbed the Floating Potential
Probe (FPP). Because of the exceedingly short time until 4A launch, only a probe built up almost exclusively from
space qualified parts and components, and with the simplest possible interfaces with ISS systems, could be constructed
and qualified in time.

FPP was designed around two probes and their electronics that had already successfully flown on the STS-62 Space
Shuttle payload experiment called SAMPIE (for Solar Array Module Plasma Interactions Experiment, see ref. 7).
These were called the V-body probe (to measure the "body potential" of a spacecraft) and a Langmuir probe (to
measure the ambient plasma density and temperature). Power was to be supplied to FPP by two small solar arrays of
ISS solar array design which had already been space qualified for another experiment. An ISS astronaut helmet light
battery would be used to store power. Data would be telemetered to the ISS Unity Node through a slightly modified
WIS (Wireless Instrumentation System), which had flown successfully several times on the Space Shuttle.

FPP was mounted on ISS a sufficient distance from the PCUs that it would not be in their plasmas and in a position
that during normal ISS operation would not be in the ambient plasma "wake" of any large structure. It was decided to
mount FPP on top of the P6 truss element, where the large U.S. solar arrays were mounted. Standard ISS attachment
points and hardware would be used to make astronaut training easier. FPP was launched in soft stowage aboard STS-
97, the U.S. solar array deployment mission, and was attached at the top of P6 during a special extra-vehicular activity



(EVA) period near the end of the mission. Astronauts Carlos Noriega and Joe Tanner deployed FPP on ISS on
December 7, 2000, and data were first obtained from the probes on the following day.

A description and photo of the FPP appearance is in Hillard and Ferguson, "Design and Testing of the Floating
Potential Probe for ISS," in this volume.

Figure 1 is a drawing of FPP as installed on ISS. Here, the view is looking down from above P6, with aft to the lower
right and starboard to the upper right. You can see the main solar array joint cylinders forward starboard and port of
FPP. The probes stick out to port, the solar arrays mainly forward and aft, and the entire crate assembly is on a
lengthy stanchion extending up from P6. A ground wire extends from FPP to the lower right to ISS structure.

FPP DATA-TAKING

FPP data files consist of housekeeping data (temperatures, voltages, battery charging currents, etc.), V-body
measurements (in volts), and Langmuir probe bias voltages and the collected currents (in logarithmic form). For each
of 200 timesteps of 0.1 seconds each, the FPP Langmuir probe voltage is stepped from +10 V to -5 V, and both a
Langmuir probe current reading and V-body probe voltage reading is recorded. After the data are transmitted back
through an antenna on the Unity Node, the V-body data are displayed to the astronauts inside Unity on a laptop
computer, and then all data are stored for relay to the ground.

Since December 8, 2000, hundreds of hours of data have been obtained from FPP. The data are of high quality. Noise
in the V-body readings is typically much less than one volt, and most of the Langmuir probe traces may be reduced for
plasma density and temperature. FPP was located almost vertically above the ISS PCU during most data-taking

sessions. Operationally, this means that because of the V X B effect of ISS motion through Earth's magnetic field,
FPP is usually a few volts positive of the PCU. ISS structure floating potentials can in principle be obtained at any

point by correcting for the v x B effect through models of the ISS orbit, ISS attitude, and the Earth's magnetic field.
We used the ISS official plasma tool, the Environments Workbench (ref. 9) to find from the FPP V-body data the
potential of ISS at the PCU, where it is being held by PCU action at the "clamping voltage" relative to the ambient
plasma. This PCU clamping voltage was anticipated from ground-based testing to be some 10 to 15 volts negative of
the ambient plasma.

In figure 2 are shown typical V-body readings of the FPP, averaged over the twenty second Langmuir probe sweep
interval, versus GMT time, with one of the PCUs in operation. As can be seen, they vary in a sinusoid-like fashion

over the 5460 second ISS orbital period. Part of this variation is due to V x B between the PCU and the FPP. Part,
however, is caused by real variations in the PCU potential as it must emit varying electron currents as the ionospheric
plasma density varies on the U.S. solar array electron collectors. In the laboratory, it has been seen that the so-called I-
V characteristic of PCUs shows a shallow dependence of the emission current until near the "clamping voltage,"
whereupon it rises steeply. A PCU acts somewhat like a zener diode, to keep its potential at or below the clamping
voltage with respect to its surroundings.

PCU I-V CHARACTERISTIC

In figure 3, we have plotted the PCU potential (calculated from figure 2 and the known vxB potential difference
between the FPP and the PCUs) versus the so-called "integrated emission current" from PCU2 (obtained from the
standard ISS housekeeping data stream) as it was recorded. The "integrated emission current” is obtained by digitally
differentiating the charge emitted by the PCU over each one second period. In the data-stream, and as plotted here,
this number is actually 10 times the instantaneous emission current. It can be seen that there is a tight relationship
between the current and the voltage over the range for which we have data. PCU2 seems to be doing its job of holding
the ISS potential near to the plasma potential even better than had been anticipated. The Shuttle bell nozzles acted as
supplemental current collectors during the FPP data period analyzed here.

FPP LANGMUIR PROBE RESULTS
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Using improved techniques developed to determine the LEO plasma density and temperature on the SAMPIE
experiment (ref. 8), we analyzed the Langmuir probe traces from the new FPP data. Most of the Langmuir probe
traces were consistent with fits for density and temperature. Chi® tests for goodness of fit were performed, and only
traces with a very good fit are plotted here. In figure 4 may be seen the plasma density versus GMT time for these
"good" traces for the first day of FPP operation. Along with the FPP results is shown the predicted ISS ionospheric
electron density from the IRI-90 model in Environments Workbench (refs. 9 and 10). It is obvious that the FPP
densities follow the IRI predictions very closely except near the beginning of data taking. It was later discovered that
during this initial period, ISS was in a "free drift" attitude mode, and the very low densities were the result of FPP
being in the wake of some major ISS structure.

Using the same "good" traces as above, we plot in figure 5 the FPP electron temperature data. The FPP electron
temperatures are everywhere greater than the IRI predictions, and sometimes are a full factor of two greater than the
oft-quoted 0.25 volt ionospheric maximum. This behavior has been seen often in the months since FPP started
operating, and we ascribe it to the extreme level of solar activity during this period.

In figure 6, we plot the 20 second averaged V-body readings versus the plasma voltage determined from the Langmuir
probe fits. Here, one can see that the V-body readings and the Vplasma readings are highly correlated with each other,
as must be true if both are indications of the FPP potential with respect to the ambient plasma. It is also clear that the
V-body scatter is much smaller than that of Vplasma, and is smaller than one volt. A plot of the V-body readings
during several Langmuir probe traces (not shown here) indicates that the V-body probe is beginning to be affected at
the highest voltages of the Langmuir probe sweep. However, the V-body reading is increased by less than 0.25 volt at
these times, well within the V-body noise.

FPP DATA ON ISS FLOATING POTENTIAL WHEN PCUs NOT IN OPERATION

Starting on January 31, 2000, a number of DTO's (a DTO is an ISS experiment) were performed to investigate how
much charging ISS would undergo in the absence of an operating PCU.

Some of the DTO's turned the PCUs off with the solar arrays placed into the wake, where it was unlikely they would
charge the vehicle beyond arcing thresholds. When these showed that even at array-to-ram angles of 97 degrees, the
charging was minimal, more bold DTO's were undertaken. One of the important pieces of knowledge gained during

the initial DTOs was that in order to explain the VX B potentials seen, relatively large but unknown current
collecting areas had to be located out on the solar array wings. A subsequent visit to the array manufacturer showed
that this collecting area was grounded wires used in the deployment mast. The collecting area necessary to understand

the V x B data was almost exactly what was found to be on the array wings.

Models using this newly discovered collecting area seemed to show that if one array were fully shunted when ISS
came out of eclipse, charging would be kept below a 60 V limit. A DTO in early April, 2001, showed that

unexpectedly low levels of solar array charging were seen, although the vxB was precisely what had been
anticipated. This implied that more unknown collecting area (about 10 m*) was located on the main ISS structure, and
acting as an ion collector, prevented ISS charging from reaching high levels.

Subsequent DTOs have shown that even with both arrays unshunted and no PCUs active, charging levels did not go
beyond about 25 volts at the FPP, or 40 V at the main structure. Because of this result, a new hazard control for ISS
EVAs was invented — shunting one array at daybreak to control potentials only at the worst time of day for tracking
arrays. New DTOs must be performed with the Space Shuttle attached before this can be deemed a reliable method of
controlling ISS potentials below a 40 V EVA limit.

In figure 7 is shown data from a time period when the ISS PCUs were intentionally turned off, to produce maximum
ISS charging during the daylight hours. The data are the points; the line is an EWB fit to the charging data at the first

peak. The quasi-sinusoidal behavior is produced by Vx B between the arrays and other conducting areas.
Approximately 10 square meters of conducting area on ISS structure had to be incorporated into the model to produce
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the fits to daylight charging. No attempt has been made to correct the model for the percentage of unshunted (active)
array strings.

CONCLUSIONS

Early data from the Floating Potential Probe on the International Space Station have been analyzed. The V-body and
Langmuir probe data are of high quality, and can be used to determine the ISS floating potential and the plasma
conditions through which ISS flies if the probe data ranges are not violated. Scatter in the 20 second V-body averages
is much less than one volt. FPP V-body data have been used to determine a relationship between floating potential and
current for the ISS Plasma Contactor Unit #2. This relationship may be used to improve predictions of ISS floating
potential when PCU2 is operating nominally. FPP has confirmed nominal PCU2 floating potential control. FPP
Langmuir probe traces have been used to determine the ambient plasma density and temperature. While the density
readings on the dayside have been found to usually be higher than those predicted by the IRI-90 ionospheric model,
the electron temperature values are higher than IRI predicts. This is interpreted as indicating an ionosphere perturbed
by the recent solar activity more than predicted by IRI. FPP data have been used to find the amount of charging ISS
undergoes when PCUs are not in operation. While the charging levels have been found to be below preflight
predictions, more data must be obtained before one can definitively say they will be below arcing thresholds for ISS
structures or the EVA spacesuits. FPP measurements have even told us details of the ISS construction that were not
anticipated when preflight and in-flight modeling were performed.
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Figure 1. FPP as installed on top of P6.
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Figure 2. FPP V-body readings versus GMT.
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Figure 4. FPP Langmuir probe plasma density versus GMT.
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Vplasma versus V-body
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