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Abstract

Our understanding of the plasma environment of planet
Mercury is mostly derived from the limited amount of
data which has been collected by the NASA flyby
mission, Mariner 10, in 1974-1975. The prospect for
new missions, the NASA Messenger orbiter and the
ESA BepiColombo cornerstone have, however,
stimulated a renewed interest in this planet. Like the
Moon, Mercury has a vestigial atmosphere and no
ionosphere, but - against all expectations - it possesses
a small, but definite, intrinsic magnetic field. Due to
the weakness of this field, of the order of a few 100 nT
at the equator, and the relatively high solar wind
pressure which prevails at the orbit of Mercury, the
size of the magnetospheric cavity is much smaller than
that of the Earth. The two environments have
somewhat similar topologies but their dynamics differ
widely. The solar wind may even reach the surface of
Mercury when its pressure is sufficiently large. The
formation of radiation belts is probably impeded for
lack of a sufficiently strong magnetic confinement. The
environment is permeated by a current system which is
basically unknown and the plasma is rarefied, like in
the Earth magnetosphere. Due to the proximity of the
Sun, the emission rate of photoelectrons is up to 10
times larger than at the Earth orbit and leads to unique
electrostatic phenomena on orbiting spacecraft and at
the surface of the planet.

1. Introduction

Mercury is a small but important object because it
forms with Venus, Earth and Mars the family of the
terrestrial planets (Figure 1). Each member of this
group carries information that is essential for retracing
the history of the whole set and constraining the
theories of planetary formation and evolution.

Even before the space era, the mass of Mercury was
known to be abnormally high for its size, due to the
perturbation that it induces on the motion of nearby
asteroids. The density of Mercury is indeed out of line
with those of the other terrestrial planets, including the
Moon (Figure 2), an oddity which is not easily
explained by current theories.

Mercury is the closest planet to the Sun and is hard to
see from the ground or even from the Earth orbit. Nor
is inserting a spacecraft around Mercury an easy task,

due to the gravitational potential and the thermal
burden of the Sun.

No spacecraft has ever orbited Mercury but the
American probe Mariner 10 made three flybys of this
planet in 1974-1975 and obtained images of somewhat
less than half the surface (Figure 3).

MERCURY

Figure 1: The terrestrial planets.
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Figure 2: Density of the terrestrial planets and the

Moon.



Figure 3: Hemisphere of Mercury imaged by Mariner
10 (no data from the blank areas).

2. The Magnetospheric Environment

Mariner 10 discovered that, against all expectation, the
planet had a magnetic field (Ness et al., 1977). This
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was contradicting the earlier assumption that the core
was frozen and that Mercury, like the Moon, could not
support any internal dynamo.

Figure 4 represents the path of Mariner 10 during the
first and third flybys, on 29 March 1974 and 16 March
1975. The plots on the left-hand side are the cylindrical
projections of the in-bound and out-bound legs; the
revolution axis is aligned along the sunward direction.
The right-hand side panel shows the projections of the
trajectories in the plane normal to this axis. The
spacecraft altitudes are 707 km and 327 km on the first
and third closest approaches (CA), respectively
(Russell et al., 1988).

The locations of the observed bow shock (BS) and
magnetopause  (MP) crossings are indicated,
superimposed on a scaled model of these boundaries.
The magnetopause is the envelope of the planetary
magnetic field and the bow shock results from the
interaction between the supersonic solar wind and the
obstacle formed by the magnetized planet. None of
these boundaries were crossed during the second flyby,
on 21 September 1974, because the closest approach
took place at a planetocentric distance larger than 20
Mercury radii in the sunward direction.
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Figure 4: Trajectories of Mariner 10 during the first and third flybys (after Russell et al., 1988).



The modulus of the magnetic field recorded during the
last flyby is plotted in Figure 5. A model of the
magnetosphere for a dipolar field structure is depicted
in Figure 6 (Slavin et al., 1997), by analogy with the
Earth environment. The strength of the field is of the
order of 300 nT at the equator, 100 times less than at
Earth, and the size of the magnetosphere is about 5%
of that of Earth. It has been estimated that, during 6%
of the time, the solar wind exerts a pressure larger than
the planetary field and strikes the surface (Russell et
al., 1988).
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Figure 5: Modulus of the magnetic field observed
during the third Mariner 10 flyby (after Ness et al.,
1976).
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Figure 6: The magnetosphere of Mercury (after Slavin
etal., 1977, and Grande et al., 2001).

The electron density observed during the first flyby, is
shown in Figure 7 (Ogilvie et al., 1977); it is about 10-
BS MP

20 cm™ in the solar wind and in the magnetosheath, as
expected when Mercury is at aphelion. The
magnetospheric plasma is rarefied and the electron
density, of the order of 5 cm”™ on an average, can be
lower than 1 cm?, like in the Earth magnetosphere. The
electron typical energies lie in the range 100-1000 eV,
one to two orders of magnitude larger than in the solar
wind.

Mercury, like the Moon, has a vestigial atmosphere due
to ion and photon sputtering and micrometeorite
vaporisation. This gaseous environment is best
described as an exosphere. The mean free paths are
large; the density and composition are highly variable
(Killen and Ip, 1999).

3. Particle Trapping and Precipitation

The efficiency of a magnetized environment for
trapping charged particles can be quantified locally by
the angle of the loss cone which contains the pitch
directions of the particles precipitating on the planet's
surface.

The loss cone at the magnetic equator is shown in
Figure 8 for a dipolar field, with the approximate
locations of the subsolar Earth and Mercury
magnetopauses. It is seen that, in a first approximation,
the cone angles at Mercury are always expected to lie
above the range which characterizes the radiation belts
at Earth.

This surmise is corroborated by a more realistic model
which includes the magnetopause and tail currents, in
addition to the dipolar field. Figure 9 shows the
isocontours of the loss cone angles in the magnetic
equatorial plane and confirms that this angle is always
larger than about 35° on closed magnetic shells in the
sunward hemisphere. The existence of permanently
trapped particle population is therefore unlikely (Grard
etal., 1999).
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Figure 7: Electron density recorded during the first flyby (after Ogilvie et al., 1977).



4. Electric Phenomena and Surface Interactions
4.1 Orbiting Spacecraft

Magnetospheric plasma densities of 1-5 cm”® and
thermal energies of 100-1000 eV vyield ambient
electron random current densities of 0.27 to 4.2 :A m™.
On the other hand, the saturation photoelectron current
density emitted from a surface element exposed to
sunlight under normal incidence, j,,, depends on the
nature of the material and the distance from the Sun; it
can reach 90-200 :A m™, at least (Grard, 1997).

: o Ll Ll Ll LI | III o ':
80 | -
— Mercury E
8 .
S 60 3
D) = -
NS N ]
P n f
D f 5
; 40 -
% C ]
~ C ]
- L
0= 2

1 10

L shell

Figure 8: Loss cone angle at the magnetic equator vs.
L shell parameter for a dipolar field.

The floating electric potential of an illuminated surface
element Ny Ng In (jpu/jc), where No= 1.6 eV is the
mean kinetic energy of the photoelectrons, is therefore
positive and of the order of 5-10 V (see also Torkar et
al., 1997).

The equilibrium potential is much dependent upon the
distribution of the most energetic photoelectrons and
larger levels can be expected, as evidenced by one of
the electron spectrum collected during the third flyby
and shown in Figure 10. The floating potential is
+40 V and two electron populations can be clearly
differentiated. On the one hand, the photoelectrons
emitted from the spacecraft with energies less than
40 eV are returned to the analyser. On the other hand,
the ambient electrons are accelerated by the positive
potential of the spacecraft and their apparent energies

are larger than 40 eV (Ogilvie et al., 1977). Taking into
account this 40 eV energy shift, the ambient electron
density is estimated to be 7 cm™. Spacecraft charging
of up to 90 V have been reported.
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Figure 9: Isocontours of the loss cone angles in the
equatorial plane (distances in Mercury radii).

Insulated surface elements in shadow will, of course,
develop negative potentials of possibly several 100 V,
commensurate with the thermal energy of the ambient
electrons. Differential charging might therefore be
expected on spacecraft with insufficient surface
conductivity.

4.2 Planetary Surface

Photoemission also induces electric phenomena on the
surface of Mercury which are specific to bodies
without any atmosphere. The saturation photoelectron
current emitted by the sunlit area lies in the range 2-4
GA. To set the ideas, this flow is 6.5 times larger in
magnitude than that of the solar ions or electrons
which impact the cross-section area of the
magnetopause.

Photoelectrons play a role in current exchanges
between the planet and its environment and insure the
coupling between subsurface and magnetospheric
currents (Figure 11). The photoelectron layer is also
characterised by a horizontal conductance of the order
of 10° S, larger than that of the height-integrated
transverse conductivity of the exosphere (Grard, 1997).
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Figure 10: Effect of spacecraft charging on an electron
spectrum recorded during the third Mariner 10 flyby.

The precipitation of energetic particles on the surface
in the high latitude regions, analogous to the auroral
zones on Earth, is a potential source of X-ray radiation
(Grande et al., 2001).

5.  CONCLUSION

A better understanding of Mercury's environment is all
the more important as several spacecraft will orbit this
planet and land on its surface toward the end of this
decade.

The NASA Messenger spacecraft is presently under
development; it will be launched in 2004 and arrive at
Mercury in  April 2009. The ESA mission

BepiColombo will be launched in August 2009 and
arrive at Mercury 3.5 years later, in the current
baseline. It consists of a planetary orbiter for remote
sensing , a magnetospheric orbiter to be procured by
Japan and a lander.
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Figure 11: Charge exchange between the surface of
Mercury and the magnetospheric environment.
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