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Abstract : In this paper, a description of a very
particular discharge, the vacuum arcs will be made. A
vacuum arc is a low voltage, high current discharge,
which produces its own the conducting medium by
electrode vaporisation. The dedicated literature will be
reviewed in order to describe the fundamentals of
vacuum arc science. We will first be interested on the
arc ignition, then we will describe the cathode spots
responsible for electron emission and metal vapour
plasma production. The great current densities on the
cathode spots produce electrode vaporisation and
melting by Joule heating, creating craters on the
cathode surface, electrode erosion, and the inter-
electrode plasma. After that, we will describe the arc
lifetime, the erosion rate and the arc voltage (nearly
constant for each electrode material). Then we will
compare the vacuum arcs found in the literature with a
phenomenon observed on satellites in a GEO orbit.
During its lifetime, a satellite might be charged by the
space environment up to a discharging threshold level,
resulting in electrostatic discharges (ESD) and finally
in satellite. A new phenomenon has appeared which
produces permanent damages has been described:
secondary discharges triggered by a primary ESD
localised in the vicinity of two adjacent solar cells are
the most probable cause of short-circuits and power
losses. As a major outcome of the EMAGS (acronym for
Etude of Modelisation of Arcs on Solar Arrays granted
to ONERA/CERT by ESTEC), it is clear now that
secondary discharges are vacuum arcs: all the
characteristics voltage, current, spectroscopic data,
craters observed on the cathode, show that secondary
discharges are vacuum with some particularities.

1. Vacuum arcs

“vacuum arcs” are electric arc discharges burning in
metal vapours. they are low voltage, high current
discharges, and provide themselves the plasma medium
by a strong vaporisation of the cathode material. The
cathode spots are the main characteristic of the vacuum

arcs: they are responsible for the electron emission and
the production of the metal plasma.

1.1. General characteristics

Arc discharges are low voltage, high current discharges.
Arc current Ia varies between one to thousands amperes
and the voltage drop Va is concentrated within a cathode
fall zone and is typically in the range of the first
ionisation potential of the cathode material. The vacuum
arcs are particular arcs: in this case, the discharge
provides itself the conducting medium. The electronic
current emission is concentrated in very small areas
(few micrometers) creating a strong Joule effect and
leading to melting and vaporisation of the cathode
material. So, the vacuum arcs doesn’t really take place
in the vacuum but in metallic vapour plasma.

1.2. Arc ignition

The interaction between the electrodes and the plasma is
important in understanding the discharge behaviour.
The interaction includes the emission of electrons from
the electrodes into the plasma.

Thermoionic emission (emission T): a plane,
homogenous metallic surface at temperature T emits an
electron current which density is given by the
Richardson-Dushman equation:
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with : kB : Boltzmann constant
e : electron charge
me: electron mass
h : Planck constant
φ : work function

Field emission (emission F): applying an external
electric field, electrons have a finite probability of
tunnelling through the barrier of potential. The field
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emission current density is given by the Fowler-
Nordheim equation (available for tip cathode geometry):
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with F : applied electric field

But the calculated emission current calculated by this
equation is order of magnitude smaller than the
measured one for cathode having extended areas: the
field is in fact enhanced by microscopic “whisker like”
surface protrusions, inclusions, presence of triple
junction (confluence of 3 materials –vacuum, insulator,
conductor- due to insulator inclusions on electrode
material or to the presence of bulk insulator, distorts and
enhances the electric field).
The transition from field emission to electrical
breakdown is due to the increase in current density: a tip
(or a micro-protrusion) submitted to an increase of field
emission is heated by the Joule effect, the tip is melted
and vaporised, creating a conducting plasma.

In vacuum arcs, there is both elevated temperatures and
external field, so a combination of thermoionic and field
emission occurs: the T-F emission.

We describe here some experimental methods of
initiating vacuum arcs.
• Breakdown to arc: one common method is simply

forcing a breakdown and promoting the
continuation of the breakdown as an arc

• Drawn arc: this method utilise surface
imperfections of the two contacts. Separating two
contacts, the current pass through very limited
areas: the current density reach very high values,
leading to Joule heating and strong vaporisation of
the contacts.

• Fuse wire: a very thin wire is placed between the
electrodes: when the current pass through the wire,
the high current density vaporise it, creating a
plasma.

• Triggered arc ignition: for spatially fixed electrodes
arcs can be triggered by a breakdown initiated
between an auxiliary electrode and the cathode,
then the resultant plasma bridges the main
electrodes gap where a discharge can be established

• Laser ignition: a laser is focused upon the cathode
and vaporises it, creating a plasma (5.10+8 W/cm2

are necessary)
In the case where two power supplies are used (one for
ignition, one for sustaining the arc) the arc stability
depends greatly on the circuit impedances.

1.3. Cathode spots

In vacuum arcs, the current emission is concentrated in
small areas (size: ten micrometers): the current density
reach very high values, thus creating strong Joule
heating, producing melting and vaporisation of the
cathode material. These areas are called cathode spots
and are a striking feature of the vacuum arcs. The
cathode spots are small, luminous and move over the
surface. They are responsible for electron emission,
metal vapour plasma production (ions, metallic vapour,
droplets) and their number is proportional to the arc
current. As one can see in Figure 4, craters can bee
easily seen on the cathode surface after the arc
extinction: the pressure due to the dense plasma in front
of the spot deforms the cathode surface (Figure 1) (that
sudden plasma pressure produce also ejection of molten
droplets).

Cathode spots characteristics greatly depend on surface
(electrode geometry, electrode material, micro-
protrusions, inclusions, grain boundaries…). Several
spots can exist simultaneously (number of spots and arc
stability decrease with decreasing current). The spot
diameter is few µm, the spot lifetime is in the µs region,
the ions are in several charge states.

Figure 1: spot structure: 1- solid metal cathode below
the spot; 2- molten metal layer (0.2-0.5µm); 3- space
charge layer (0.005-0.01µm); 4- ionisation and
thermalisation layer (size 0.1-0.5 µm); 5- dense central
spot plasma (5-20 µm); 6- plasma expansion region; 7-
ejection of molten droplets (size: 0.1-100µm). Ref:
Farral, Lafferty: Vacuum arcs

1.4. Inter-electrode plasma

The inter-electrode plasma in vacuum arcs, at low and
medium currents, is constituted by metallic vapours
emitted from the cathode. The plasma moves away from
the cathode and a part of it condenses on the structures
surrounding the electrodes. Its main function is to
conduct the arc current but it interacts also with the
electrodes. For the low current vacuum arcs, a single
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spot produce a plasma jet directed away from the
cathode. The plasma characteristics depends on the
cathode material. The electron density is proportional to
the current density which varies generally from 10E+20 to
10E+22 m-3. The ion current fraction is nearly constant
(from 0.07 to 0.12 of the total arc current). The
electronic temperature varies with the cathode material
(from 3 to 9 eV).

1.5. Characteristics

Erosion - Damages: the erosion rate is defined as mass
loss per transported charges (g/C). In a low current
vacuum arc the erosion is localised at the cathode and is
due to emission from the spot of ions, neutrals and
molten droplets. Generally, erosion is due mainly to
emission of ions (95%) and to the ejection of droplets
(the evaporation of neutrals can be neglected). The
dominant erosion rate due to the ions can be evaluated
by:
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with: mi ion mass
Z: charge number of the ions flowing out of the
spot
Ii / I: fraction of the current of ions flowing out
of the spot (nearly constant)

The erosion rate depends on the arc current, the cathode
material, the cathode temperature… Typical values of
the erosion rate is some 100µg/C.

Arc lifetime: the arc lifetime is different than the spot
lifetime: while the mean lifetime of a cathode spot is
typically shorter than 1µs, a vacuum arc can be
established permanently. But the vacuum arcs aren’t
stable and their lifetime depends on many parameters.
The most evident parameter is the arc current: the
higher the arc current, the higher the number of spots
exist and the higher the arc lifetime (when many spots
exist simultaneously, the extinction of one of them has
less influence on the arc than when a single spot exists).
The average lifetime depends also on the surface state
(rough surface mean longer arcs because there are many
sites with local enhancement of the electric field), on the
surface temperature, on the material (higher vapour
pressure mean higher arc lifetimes), on the external
circuit (higher circuit voltage mean higher lifetime,
capacitors, inductance) and on the electrode geometry.

Arc voltage: the arc voltage depends greatly on the
cathode material: the voltage drop Va between the two
electrodes, is concentrated within a cathode fall zone
and is typically in the range of the first ionisation
potential of the cathode material. Typical values vary
from 15V (for zinc electrodes) to 25V (for Mo
electrodes). A striking feature of the vacuum arc voltage

is its noisy character: the voltage consists in a dc signal
with peaks. These peaks correspond to cathode spot
motion or to the formation or death of a spot. The
vacuum arc characteristics Va(Ia) show a relatively flat
resistive-like evolution over a large current range
(Figure 2).

Figure 2: V(I) characteristic of vacuum arcs for many
cathode materials. Ref: Farral, Lafferty: Vacuum arcs

2. secondary arcs on solar cells: atypical vacuum
arcs

During its lifetime, a satellite on a geo-
stationary orbit is charged by particles of the
magnetosphere (mainly electrons) and dielectrics are
differentially charged to a point where a spontaneous
discharge may occur. This is a well-known phenomenon
called electrostatic discharges (ESD) which produce
temporary anomalies, unwanted switching mainly due
to electromagnetic interferences. A new phenomenon
was however observed recently producing permanent
damages as observed on several satellites. It has been
described as “secondary discharges” triggered by a
primary electrostatic discharge localized in the vicinity
of available energy. These secondary discharges occur
particularly on solar arrays between two adjacent and
biased solar cells. Cover glasses covering the solar cells
are typically proved to charging and discharging in a
geo-stationary environment.

2.1. Secondary arcs are vacuum arcs

From laboratory experiments done on dummy zinc and
copper samples and on real solar cells samples, the
following observations are made: the duration of
secondary discharges; the arc current and arc voltage;
the spectroscopic data; the SEM recordings showing
erosion craters on the surface and molten droplet
ejections.

For instance, the recorded experimental current values
between 1 to 5A typically fall in the electric arc domain.
The discharge voltage measured between 15 and 40V
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are clearly along vacuum arc characteristics. The
experimental data also shows the very characteristic
voltage noise associated with cathode phenomena.

The spectroscopic data indicates that the secondary
discharges produce a large amount of metal vapour
plasma.  The plasma radiation clearly indicated strong
zinc lines for the zinc electrode samples and strong
copper lines for the copper samples. Strong silver lines
were also found for the real solar cells, but in this case
there are also another spectral lines not clearly identified
(maybe produced from the solar cell components and/or
adsorbed gas).
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Fi
gure 3: spectroscopic data obtained during a secondary
discharge on a zinc sample: all the identified lines are
zinc lines.

The SEM recordings (Figure 4) show erosion craters
very typical in shape and size (~ µm diameter) to spots
described in the literature for all the samples observed
(copper, zinc, solar cells). These zones are the site of
strong melting and vaporisation of the cathode material
resulting in important electrode material erosion and
degradation.

Fig
ure 4: SEM recording of a solar cell sample (left part:
kapton, middle: silver interconnect, left part: cell and
cover-glass)

The liquid metal droplets emitted from the spots during
the discharge is another vacuum arc characteristic.
These metal droplets may in fact form an important
fraction of the total erosion loss of the surface.

Figure 5: SEM recording of a zinc sample (dark layer
in the centre : epoxy insulator, white layers on both
sides are the zinc cathode –left- and anode –right. The
large white cloud with striations on the bottom right of
the epoxy layer is an artefact from charging effects of
this surface under the SEM.

We see clearly a large number of the metal particles
being splashed away from the erosion craters within the
gap area (Figure 5). The size of the particles varying
between 0.1 and 100 µm in diameter is consistent with
the vacuum arc literature data.

Thus, all the experimental data effectively show that
secondary arcs have the same characteristics than the
vacuum arc discharges.

2.2. particularities of the secondary arcs

Arc ignition: the experimental study shows clearly that
secondary arc ignition is triggered by a primary ESD
taking place in the active gap i.e. between the two
electrodes: no secondary arcs was observed when ESDs
take place elsewhere. In the solar cell samples, all the
damages observed were located on the silver electrode
beneath the solar cell itself (Figure 4); sometimes the
damages were also observed on the kapton film and on
the solar cell. One can therefore believe the secondary
discharge ignition on the solar cell occurs only on the
metallic connector and not on the solar cell itself.

Electrode geometry: another secondary arc
particularity is its uncommon geometry. In both zinc,
copper and solar cell samples, two thin electrodes (some
10µm) are facing each other, while in the vacuum arcs
literature at least one massive electrode is used. That
particularity may affect the secondary arc characteristics
like the lifetime (lower lifetime for thin electrodes than
bulk electrodes) and the erosion rate.

Currant domain: the vacuum arcs found in the
literature are studied for currents higher than ten
amperes while the secondary arc current domain was
restricted from one to five amperes. This current is high
enough to identify the secondary discharges as vacuum
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arcs but it induces some little differences like the
Varc(Iarc) characteristics.

2.3. characteristics

Erosion: The surface material erosion rate values range
typically in the hundreds of micro-grams of metal
removed per Coulomb of electric charge transferred,
this value being around 215 µg/C for zinc cathodes [ref:
Kimblin].  Integrating the secondary discharge current
of a typical discharge lasting 40-60µs to yield the total
charge transferred (4.77x10-4 C) results in a mass eroded
of 0.1 µg. Such metal removal is first in the form of
metal vapour that eventually condenses on the
surrounding surfaces, and more particularly within the
inter-electrode gap.
Important visible damages observed on zinc, copper and
solar cells samples (Figure 6) resulted from long
duration secondary discharges of more than 100µs.

Figure 6: photo of a solar cell sample. One can see
clearly visible damages (molten metal between the two
adjacent cells (scale: gap=1mm).

On other samples damages appeared clearly in the
microscopic scale, for example in Figures 3&4 where
one can see the craters created by the cathode spots.
Such tiny damages were observed also in locations
where no secondary discharge was clearly identified, i.e.
where both the current and voltage variations lasted no
more than the electrostatic discharge duration

Depot: chemical analyses of the surface composition in
local gap regions where no particles are seen indicate
clearly the presence of zinc on dummy zinc samples.
Such thin metallic films clearly degrade the gap
insulating properties as observed through electrical
resistance measurements between the electrodes. The
inter-electrode resistance is seen to decrease from more
than 500x109 Ω on new samples to 20x109 Ω after a few
discharges, and even to some hundreds of ohms for
samples on which important visible damage is seen
following destructive arc discharges.

Lifetime: The secondary arc stability is showing a clear
dependence with both the current and voltage
alimentation (Figure 7&8).
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Figure 7: lifetime as a current function (zinc sample).
Applied voltage=40V

0

50

100

150

200

250

300

350

400

450

30V 40V 50V 60V 70V 80V 90V

applied tension

m
ea

n 
lif

et
im

e 
(µ

s)

Figure 8: lifetime as an applied voltage function
(copper sample). Current=4A

3. Conclusions

All experimental results presented in the present paper
converge to a very specific type of electrical discharge
referred to as “vacuum arcs”. The cathode arc foot is the
source of very important fluxes of both metal vapour
eventually condensing on nearby surfaces and of liquid
droplets splashed away from the emitting sites.  As
such, the cathode spots are not only the location of
important local degradation of the metallic electrode,
but the source producing a metallisation of the
surrounding surfaces. Electrical resistivity
measurements effectively indicated a degradation of the
gap insulate property with the number and/or duration
of such discharges.
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