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Recent results on the validity of the orbital-motion-limited (OML) regime of cylindrical Langmuir probes,
which are essential for bare-tether applications, are extended to show how the current lags behind the OML value
beyond the OML regime, and the possible effects of motion of the probe relative to the plasma.

The electron current I to a long cylinder at rest in a colli-
sionless, unmagnetized, Maxwellian plasma of density N∞ and
temperatures Te and Ti, may be written as

I = Ith  ×  a function of R/λDe, eΦP/kTe, Ti/Te.  
Here, Ith ≡ ∞2 2π πRLeN kT me e/  is the random or thermal

current, λDe ≡ kT e Ne / 4 2π ∞  is the Debye length, and R, L, and

ΦP are probe radius, length, and bias, respectively. For cylin-
ders thin enough, however, I/Ith only depends on eΦP/kTe. This
is the orbital-motion-limited (OML) regime; at high bias one
has

IOML ≈ Ith × 4e kTP eΦ /π  = 2RLeN∞ 2e mP eΦ /  ,

               (eΦ  p >> kTe) .                                       (1)

There is a maximum radius, Rmax, for the OML regime to
hold with other parameters fixed,1,2 the ratio I/IOML dropping
below unity when R goes beyond Rmax. The way that ratio drops
below unity is of interest for the design of bare (uninsulated)
tethers.3,4

In general, determining electron trajectories to obtain I
requires solving Poisson’s equation for Φ (r),
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with boundary conditions Φ  = Φp > 0 at r = R, Φ → 0 as r →
∞. The Boltzmann law used for the repelled-particle density Ni

is quite accurate for the eΦp >> kTi, kTe values of interest here.
The basic problem in probe theory lies in the attracted-particle
density Ne.

Since the Vlasov equation conserves the electron
distribution function f ( , )r v along orbits, and electrons trapped

in bounded orbits may be ignored,2 we have f ( , )r v = fM(v∞)

(undisturbed Maxwellian) if the r v,  orbit, traced back in time,
reaches infinity, and f ( , )r v = 0 otherwise. Since both axial

velocity vz, and transverse energy (Fig.1)
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are also conserved along orbits, values r v,  determine v∞ and fM

in terms of the local potential Φ(r); the density Ne at a radius r
is then obtained by integrating fM over appropriate velocity
ranges.5 A change of variables vr, vθ  →  E,  J  ≡  mervθ, and a
trivial vz-integration yield
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where the J-integral covers just positive values, and we define

                   Jr
2(E) ≡ 2mer

2[E + eΦ(r)] .                     (5)
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Figure 1. Geometry of cylindrical probe and electron motion.

The E-integral also covers positive values and is carried out
once for vr < 0 (incoming electrons) and again for vr > 0
(electrons that turn outwards at a radius between r and R).

An incoming electron of energy E will only reach r if vr’
2 is

positive throughout the entire range r < r’ < ∞ ; since J is also
conserved, its range of integration will be

0 < J < Jr
*(E) ≡ minimum { Jr’(E) ; r ≤ r’ < ∞ }.     (6)

If the minimum occurs at some r’ > r, electrons in the
range Jr

*(E) < J < Jr(E), for which vr
2 would actually be positive

at r, never reach r and are thus excluded from the J-integral
(there is an effective potential barrier at r, for energy E). The J-
range of integration for an E-electron outgoing at r is  JR

*(E) <
J < Jr

*(E), because electrons in the range 0 < J < JR
*(E)

disappear at the probe. Equation (4) may now be written as
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The current itself is easily found to be
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A hypothetical potential with no barriers at all [Jr
*(E) =

Jr(E) for 0 ≤ E < ∞, R ≤ r < ∞] would everywhere reduce Ne in
(7) to a function of the local radius and potential. As we shall
now see, however, actual potentials behave differently. Note
that in order to have Jr

*(E) = Jr(E) in the entire range
0 ≤ E < ∞   at     a     particular   r, it suffices to have Jr

*(0) = Jr(0).
Using Jr

2(0) ∝  r2Φ(r), it follows from (6) that the condition of
no barrier at a radius r is

                   r2Φ(r) ≤ r’2Φ(r’) (r ≤ r’ < ∞).                   (9)

There are two consequences of that simple result: First, the
condition of maximum current in (8), JR

*(E) = JR(E) for 0 ≤ E
< ∞ (no potential barriers   just   at R) is satisfied if

          R2Φp ≤ r2Φ(r).    (R ≤ r < ∞ ).                  (10)

This is the OML current; with E ∼ kTe << eΦp, we have
JR(E) ≈ JR(0) in Eq. (8), recovering (1). Secondly, a potential
satisfying the condition

                     d(r2Φ)/dr ≥ 0 , r0 ≤  r < ∞,                      (11)

for some radius r0, has potential barrier at no radius beyond r0,

      Jr
*(E) = Jr(E) for  0 ≤  E < ∞,  r0 ≤ r < ∞.             (12)
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Figure 2. Schematics of potential Φ versus Φp(R/r)2 for

profiles a and b (R < Rmax), c (R = Rmax), and d (R > Rmax), with
Rmax the largest radius for the OML regime to hold. The
hypothetical profile a would have no potential barriers.

Both consequences are conveniently illustrated by display-
ing Φ versusΦpR

2/r2 for potential profiles (Fig.2). Clearly,
profiles a-c would lie in the OML regime, whereas d would
not. Also, cases b-d, which are schematics of actual profiles,
present property (11), r0 being the radius where the ordinate-to-
abscissa ratio in the figure, Φ/(ΦPR2/r2), goes through a
minimum, then increasing monotonically when moving to the
left past the minimum. Profile c, just touching the diagonal in

the figure, corresponds to the case of maximum radius, Rmax.
1,2

The extreme condition Jr
*(E) = Jr(E) for 0 ≤ E < ∞, R ≤ r < ∞,

requiring a positive d(r2Φ)/dr throughout, is, of course, more
restrictive, and is only satisfied by the hypothetical profile a.
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Figure 3. Potential profile for R > Rmax. The plasma is quasi-
neutral below point 1; below point 0 there are no potential
barriers. The broad, ion-free region above the thin layers at
points 1 and 2 is free of space-charge effects near the probe.

Figure 3 again shows the profile d of Fig.2 for the R > Rmax

case. In order to solve Poisson’s equation using (7), we need
Jr

*(E) in the different regions of the profile, and the particular
function JR

*(E), which gives the current I too. The no-barrier
condition (12), Jr

*(E) = Jr(E) for all energies, holds below point
0. Property (11) may be illustrated by considering the r-family
of straight lines J2 = Jr

2(E) in the E-J2 plane, for the range r ≥ r0

(Fig.4a): for r increasing, the corresponding line keeps moving
to the right for all positive energies. Since point 0 lies below
the diagonal in Fig. 3, its line reaches to the left of the R-line
on the J2 axis.

The quasineutrality approximation for Eq.(2), Ne ≈ Ni, is
valid below a point 1 where dΦ /dr → - ∞ (Fig.3). Between
points 0 and 1, there is an r-dependent energy range with
potential barrier. Since we have r1 < r0 and r1

2Φ1 > r0
2Φ0, the r-

lines for points 0 and 1 meet at some positive energy, as shown
in Fig.4b. Also shown is the envelope J2 = Jenv

2(E) of the set of
r-lines in the range r1 < r < r0, which is determined by the
equations J2 - Jr

2(E) = 0, ∂ [J2 - Jr
2(E)] /∂ r = 0, leading to the

parametric representation

          J2 = Jenv
2(r) ≡ -mer

3e dΦ/dr,                       (13a)

      E = Eenv(r) ≡ - eΦ(r) - 1/2 re dΦ/dr .                (13b)

The envelope touches each r-line at the E, J2 point given by
Eqs.(13a, b). Since E and J2 diverge with -dΦ/dr in (13a, b), as
r → r1, the envelope is asymptotic to the r1-line; also, it is
tangent to the r0 -line at E = 0 (Fig.4b). Condition Eenv(r) = 0
in (13b) corresponds to a minimum of r2Φ, the profile tangent
meeting the origin in Fig. 3 when point 0 is reached from
above. The quasineutral solution below 0 has no such property,
thus breaking down at that point; local use of the full Eq. (2),
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however, suffices to round the profile at 0, with no effect
beyond its immediate neighborhood. Point 0 will just be the
point closest to 1 in the quasineutral, no-potential-barrier,
solution.
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Figure 4. (a) Straight lines of the r-family J2 = J2

r(E), defined in
Eq.(5), for probe point 0 in Fig.3, and any two radii r' > r beyond
r0. (b) Envelope J2

env(E) (dashed curve) for r-family lines in the

range r1 < r < r0 , and limit lines for points 0 and 1. At the top of

the thin layers, and for most of the broad region above in Fig.3,
r-lines lie far to the right; as the probe is approached, however,
the r-line would move back to the left, finally reaching the probe
line.

A simple but accurate approximation for Jenv(E) can now be
readily obtained without knowledge of Φ(r), using the r0 and r1

lines in Fig.4b,
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where the values r0, Φ0, r1, and Φ1 are yet unknown. For any
radius r between r1 and r0 we would now have

              Jr
*(E) = Jenv(E)  for E < Eenv(r),                (15a)

                      = Jr(E) for E > Eenv(r) .                  (15b)
                           

As r approaches r1, one has Eenv(r) → ∞ in (13b), Eq.(15a)
for Jr

*(E) then holding throughout the entire range 0 < E < ∞.
Above point 1 in Fig. 3 the potential Φ rises rapidly to values
Φ >> Φ1. Note that both eΦ0 and eΦ1 are of order of kTi,
whereas eΦp/kTi is very large (∼ 103, 104 for tethers); if Fig. 3
were drawn to scale, the near-vertical potential rise up from
point 1 would occur very close to theΦ -axis, and point 0
would lie very close to the origin. With the r-line moving far
to the right in Fig.4b asΦ rises, we still have Jr

*(E) = Jenv(E).
Finally, as one approaches the probe, moving toward the

upper right corner in the diagonal of Fig. 3, the r-line moves
back to the left in Fig.4b, ending at the R-line. As it follows
from Fig. 4b and the preceding discussion, we have JR*(E) =
Jenv(E) below the energy where the envelope crosses to the right
of the near-vertical R-line. We now assume that R/Rmax is large
enough, with the crossing occuring at large E/kTe. One may

then safely set JR*(E) = Jenv(E) for all energies in the integrals
of Eqs. (7) and (8). We also have Jr*(E) = Jenv(E) from point 1
to the probe.

The ratio I/IOML takes now the form
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To obtain the values r0, Φ0, r1, and Φ1 that determine Jenv(E)
in (14), we solve Poisson’s equation with JR*(E) = Jenv(E) in (7)
throughout. The quasineutrality relation at point 0, with Jr*(E)
= Jr(E) in Eq.(7), and both the quasineutrality relation with
Jr*(E) = Jenv(E), and its derivative with respect to Φ at r1, where
dr/dΦ vanishes, serve to determine eΦ0/kTe, eΦ1/kTe, and r1/r0

as functions of Ti/Te. Above point 1 there are two non-
quasineutral layers that take the solution to values satisfying
Φ1 << Φ << Φp, and to a radius r2 a bit closer to the probe; the
structure of these two thin layers can be analysed in a simple
way, and yields r2/r1 and the behavior Φ ∝ (r1 - r2)

4/3 at the top
of the second layer.2

In the broad region from these layers to the probe, we have
eΦ/kTi ∼ Φ/Φ1 large (Fig.3), making Ni/N∞ exponentially
small in Poisson’s equation; also, since r- lines lie far to the
right in Fig.4b, we have Jr*(E) = Jenv(E) << Jr(E) ≈ Jr(0),
considerably simplifying the integral for Ne /N∞ in (7):
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although this approximation fails within some neighborhood of
the probe, the high bias makes space-charge effects negligible
there (even though R is not small compared with λDe, λDi).

2

Using (17a, b), and matching to the second layer at r1×r2/r1 ,
one fully determines the solution Φ(r) to Poisson’s equation in
this broad region. The boundary conditionΦ  = ΦP at r = R,
yields a fourth relation and serves to determine r1.
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Figure 5. Rmax/λDe versus eΦP/kTe for three values of temperature
ratio Ti/Te.

Figure 5, taken from results in Ref. 2, shows Rmax/λDe

versus eΦP/kTe and Ti/Te ; at any given bias, Rmax increases
with the Ti/Te ratio. Figure 6 shows results from our present
calculations for I/IOML. Each curve reaches the value I/IOML = 1 at
a radius ˜

maxR  larger than Rmax (See Fig. 5). This is a conse-
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quence of our having used the approximation JR
*(E) = Jenv(E),

which is only valid for R/Rmax large enough; results valid for the
entire range R/Rmax > 1 are the subject of a future publication.
The present, simplified results, giving I/IOML = 1 for Rmax < R <
˜

maxR  and I/IOML dropping rapidly beyond ˜
maxR , are qualitatively

correct, however, and lead to some simple conclusions:
1) One might use tethers with R larger than Rmax, but not

larger than ˜
maxR .

2) The ratio ˜
maxR /Rmax increases rapidly with decreasing

Ti/Te.
3) ˜

maxR , in opposition to Rmax, exceeds λDe for quite small

values of Ti/Te.
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Figure 6. Normalized current I/IOML versus R /λDe, for eΦP/kTe =
3000 (a) and 300 (b), and three values of Ti/Te. In our
approximate solution (strictly valid for R/Rmax large), the ratio
I/IOML remains equal to unity between Rmax and some value ˜

maxR .

These conclusions are relevant to the design of bare tethers,
which find a plasma with Debye length and, to some degree,
ratio Ti/Te varying along the orbit; this is more so if the tether
is used for orbit raising or lowering. The conclusions also
support a point made in Ref.1, concerning the effect of a
plasma velocity U relative to the probe. This introduces a new
characteristic (ram) ion energy, which, for a tether orbiting in
the F layer, is large compared with the thermal energy,

1/2 miU 2 ≈  4.5 eV  >>  kTi  ∼ 0.15 eV
(at higher altitudes, with H or He ions—and weakly reduced
U2—, the two energies are comparable). The unperturbed ion
distribution function is now strongly nonisotropic, and the
electric field is non radial.

Note that the OML current law is still valid, being
independent of both ion distribution function and cross-section
shape (just replace 2R with perimeter/π in Eq.1); the law
applies even if the potential has no rotational symmetry.2 The
high-bias limit law (1) is particularly robust: it is also inde-
pendent of the unperturbed electron distribution function as
long as it is isotropic, as in the present case, with 1/2 meU

2 <<
kTe. The effect of a large ion ram energy would just be a
reduction of the domain of validity for the OML law.

The fact that I/IOML remains unity over some domain in
Fig.5 mirrors the fact that IOML/Ith in (1) is independent of R/λDe,
and Ti/Te. Figures 6a, b extend the case for I/IOML close to unity
to a much larger domain. This means that one could alter
substantially, say Te or Ti, or the probe cross section (keeping
its perimeter), thus fully modifying the structure of the
potential field, without reaching the boundary of the domain of
OML validity, that is, with no current I variation. This is a
case quite the opposite of large spherical collectors, as used in
the TSS1 tethers. In predicting the new domain of validity
(instead of an actual value for I) one might use crude models, if
conservative.

For the conditions of interest, 1/2 miU
2 << eΦp, ions would

be kept far away from the probe for all directions, with some
(angle dependent) potential structure similar to that shown in
Fig.3. In a crude model, one would ignore the nonthermal
character of the ram energy, excepting the fact that it makes the
ion characteristic energy angle dependent; for all other
parameters fixed, the distance r0 in Fig.3 (and for b-d profiles in
Fig.2) is directly related to the characteristic ion energy.2 In a
plasma with Ti ∼ Te, one would then have effective ion
temperatures kTi(eff) ∼ 1/2 miU

2 ∼ 30 kTe on the windward side,
and Ti(eff) ∼ Te on the lateral sides. For the lee side, we take
r0(lee) ∼ r0(side)× m U kTi e

2 2/  from simple wake considera-

tions, and r0 ∼ R e kT T TP i e iΦ / / , for Ti/Te small or about

unity from the no-U analysis,2 yielding Ti(eff) ∼ Te ×
2 2kT m Ue i/  ∼ 0.2 Te. One can now see from Figs.5 and 6a,

that a probe with eΦP ∼ 3000 kTe and R ≤ Rmax (Ti/Te ∼ 1,
U = 0) ∼ λDe, has R well below ˜

maxR  for all three values Ti/Te

∼ 0.2, 1, and 30; this suggests the probe should collect current
close to the OML value in Eq.(1).
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