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Abstract Although arcing due to spacecraft charging has been known for some twenty years, and
mitigation strategies have been used to prevent it, it is now known that initial arcs can lead to potentially
catastrophic continuous arcs between adjacent solar cells or electrical traces. First discovered by the Loral

Tempo spacecraft, this phenomenon has now also been verified in laboratory testing for the LEO EOS-AM
solar arrays, which are currently being modified to prevent such occurrences on orbit. This paper will show
laboratory results on mechanisms, risky configurations, and thresholds in voltages, separations, and
currents as determined by vacuum plasma testing at the NASA Lewis Research Center. Mitigation

strategies will also be discussed.
Introduction

Previous experience has shown that electrical
discharges (arcs) occur on the surfaces of a high
voltage solar array with high negative potential
relative to the surrounding plasma. The most probable
site for an arc inception is a triple junction: metallic
interconnect, coverglass, and plasma [Ferguson, 1989;
Cho and Hastings, 1991; Jongeward and Katz, 1998],
but an arc on a triple junction can not cause a
substantial damage to a solar array. However, two
cases of considerable damage to solar arrays were
registered during 1997 for two Space Systems/Loral
high-powered spacecraft operating in GEO. Katz et al.
[1998] suggested that the damage could be caused by
an electrical discharge between adjacent solar cells
with the highest potential difference. In this case an
arc can provide enough power for local heating of a
Kapton substrate up to the temperature of the polymer
pyrolysis. This process can be supported by the current
generated by the array itself until strings of solar cells
become shorted. Comprehensive tests have been
undertaken to verify the phenomenon and to elaborate
the preventive actions. The same mechanism of array
failure is applicable to any array with high enough
both operating voltage and potential difference
between adjacent solar cells. A sample of the EOS-
AM solar array (operating voltage 127 V) has been
tested also. Results obtained in laboratory
experimentation have been used to modify the design
of the array in such a way that excludes the possibility
of a sustained discharge between adjacent cells.

A theoretical analysis allows us to determine the
main parameters that are of critical importance for
array operation. Even though some measures have
been undertaken to prevent sustained arcs for the
arrays mentioned above, we believe that the problem
of array reliability is far from to be solved in general.
For instance, we have found that arcs on triple
junctions cause array performance degradation, but
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there are no quantitative results regarding the rate of
the degradation.

2.Experimental setup

The purposes of the experiment are the following: to
measure arc threshold and arc rate vs. bias voltage, to
locate arc sites, to determine critical parameters such
as voltage drop and maximum current between
adjacent cells, and to verify the methods of the
prevention of sustained arcs. The circuitry diagram is
shown in Fig. 1 [Katz, 1997]. A digital voltmeter has
been installed to measure the voltage drop between
two strings during the sustained discharge (not shown
in Fig.1). All measurements have been done in the
large vacuum tank (1.8 m diameter and 3m length)

Fig.1 Solar Array Simulator (SAS) provides voltage
0-200V and current 0-3 A.

with background pressure 0.1 puTorr, neutral gas (Xe)
pressure 8-10 uTorr, the electron number density (3-
5)10° cm®, and electron temperature 1-1.2 eV. The
sample of solar array isinstalled in the middle of the
chamber facing the video camera (Fig.2). All events
were videotaped to allow us to locate arc sites. Six
samples with different design (S and GaAs) were
tested, and all of them demonstrated similar behavior,
although the magnitudes of arc thresholds, arc rates,
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critical SAS currents and voltages had been rather
scattered.
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Fig.2. Sustained arc on GaAs array. Bias voltage —
350V, SAS voltage 80 V, and current limit 2.25 A.
The picture in left bottom corner is taken one second
after the flash. The sustained arc remains steady until
the SASisturned off.

3.Experimental results

In this paper we present results obtained in testing one
GaAs solar array sample provided by Space
System/Loral. The design and cell layout for this array
isshownin Fig.3.
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Fig.3. The GaAs Solar Array Design.

The sample consists of 36 cells arranged in 3 strings
with 12 cells in each string. On the first stage of the
experiment the whole sample was biased to determine
the arc threshold and arc rate. Measurements have
demonstrated a strong dependence of the arc rate on
the bias voltage, as expected according to many
previous space and ground experiments [Ferguson,
1989; de la Cruz et al., 1996]. The arc rate grows
amost a hundred times when the bias voltage changes
from—-170 V to —220 V (Fig. 4). It is worth noting that

the curve of arc rate vs. bias voltage shifts to the right
after the sample has experienced a few hundred arcs.
At the end of the experiment a bias voltage about —350
V is needed to keep arc rate in the range of 02-0.3
arc/minute.

It is also in agreement with expectation that most
arcs are located on triple junctions (Fig. 5). The
absence of arcsin the gap between adjacent cells when
the SAS is switched off is important for understanding
the physical mechanisms of arc inception in the gap
between cells that are biased by the SAS in the next
stage of the experiment.
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Fig.4. Arc rate vs. bias voltage (negative) for the
virgin sample.
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After a bias voltage has been applied between
sections of string 2 (Fig.6) a considerable percentage
of arcs occur in the gap between adjacent cells. Some
of these arcs are extended , e.g. the duration of
current pulse registered by the right current probe
(Fig. 1) exceeds substantially the duration of the
capacitor discharge current (left probe). But, because
the current limit is set aslow as 1.75 A, the sustained
discharge between cells can not be initiated. At the
end of this particular test, the current limit was set
2.25 A, and the potential difference of 80 V was high
enough to keep pyrolysis steady (Fig.7).
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The results of the synchronous measurements of
initial arc current, capacitor voltage, and sustained
arc current are shown in Fig. 8.
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Fig. 8. The vertical scale for the initial arc current is
5 A/div, for sustained arc current- 1 A/div, and time
scaleis 200 ps/div.

4. Theor etical model!.

The energy flux toward the Kapton substrate can
be calculated from measurements of the arc current:

P(t):ad(t)w(z) 0w
20t Oon°s[]
where U(t) is the voltage drop on the discharge
plasma cloud, r is the distance between the arc
inception site and the Kapton surface, and a <1 isthe
numerical coefficient.
The voltage drop can be found by integrating the
electrical field strength over the line connecting the
arc inception site with the point on the substrate. As
is well known, the initial size of the arc is about
Ry=10 um which is much less that the integration
path (Clmm). Taking into account that the plasma
conductivitya(ne, To) depends on plasma density
logarithmically (Fig.9) we obtain the following result
for the voltage drop:
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Fig.9. Plasma conductivity vs. electron number
density.

The equation of thermal balance for the Kapton
surface includes the heating term (Eq.(1)), and
cooling terms due to radiation, thermal conductivity,
and Kapton degradation. For the particular
experiment (Fig. 8) the temperature of the polymer
surface increases considerably in about 50 ps
(Fig.10). This temperature is high enough to initiate
the pyrolysis [Ardova et al., 1970]. The rate of
decomposition of the polymer depends on the
temperature and binding energy q that allows us to
calculate the neutral gas density in the gap between
adjacent cells (Fig. 11). This gas contained in the
space between two conductors with the potential
difference 80 V provides ions and electrons to keep
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the discharge steady. If we suggest the degree of
ionization be about 20-50% as it usually is for a low
voltage discharge, we obtain quite good agreement
between the measured voltage drop and theoretical
calculations (Fig.12).
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Fig. 11. Neutral gas density in the gap between
adjacent cells.C0 q=50 kcal/mol; --- g=73 kcal/mol.
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Fig.12. Theoretical calculation of the voltage drop is
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5. Conclusions

Comprehensive experimental tests and theoretical
analysis allow us to understand physical mechanisms
of solar array failure. The basic model suggested by
Katz et. al. [1998] is quite adequate, and this model
can be used to elaborate some measures for the
prevention of a sustained discharge between adjacent
cells. But before we turn our attention to preventive
measures, we have to discuss the main operational
parameters and their role in the arc inception (Fig.
13). The bias voltage in the experiment simulates the
most negative potential of solar cells due to the
spacecraft charging. This potential may reach the
kilovolt range in GEO, and it is almost equa to the
array operating voltage in LEO. An additional
capacitor (C=1 pyF, Fig. 1) simulates the capacitance
of asolar array. For the particular GaAs array (Fig.3)
the capacitance can be estimated as 0.1-0.2 uF/m?
Currently, high-powered spacecraft have arrays with
the area 20-30 m’. To estimate an effective
capacitance we need to take into account the
distribution of the potential along an array and the
fact that the entire surface of an array is not
discharged during the arc. However, even a
conservative estimate demonstrates that 1uF is rather
the lower limit. The probability of initiation of the
pyrolysis rises with an increase in the arc power

(P OCUZ,) and goes down with the increase in
the gap between the cells, but the arc threshold and
arc rate depend on the coverglass thickness, and cell
and interconnect materials; thus, changes in the array
design may result in an arc threshold that is higher
than the array potential with respect to the plasma.
However, increases in the array size and weight are
in contradiction with  economical requirements.
Protection of the Kapton substrate by an RTV barrier
between strings results in an increase in the voltage
threshold for a sustained discharge (Usas=160-200 V
depending on the array design) but this solution is
aso not fully satisfactory. RTV coverage adds
weight and cost to the array, and the question of the
thermal compatibility with the array materia is still
unanswered. The SAS voltage simulates the potential
difference between adjacent cells caused by an array
operation. This value can be reduced considerably
(for example, to 40 V) by a special wiring scheme.
Pyrolysis can be prevented also by limiting the
current that flows through the discharge area between
cells. It seems that a current limit 1.5 A is low
enough to achieve the expected reliability of the
array. These modifications have the same
disadvantages of higher cost and weight, and they do
not protect an array from gradual degradation due to
arcing on triple junctions. We believe that the
modern tendency to raise operating voltages (above
300 V) isin obvious contradiction with the standard
solar array design.
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Fig. 13. Critical parameters that define the probability of an array failure.
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