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Abstract

Recent spacecraft failures have brought into focus the need for increased understanding and modeling of spacecraft
charging by spacecraft designers. Spacecraft charging assessments are needed for designing all geosynchronous, mid-
altitude, and polar, low-earth orbit spacecraft. Under contract to the Spacecraft Environment Effects Program office at
NASA/Marshall, we are developing a CD-ROM/web based multimedia interactive Spacecraft Charging Handbook with
integrated, updated spacecraft charging models. This product guides the nonexpert through the appropriate analysis using
the power of sophisticated charging analysis tools. It is easy to use and will be accessible over the web. The one-
dimensional surface charging tools use the same physics as the NASCAP/GEO code. Over three years, six assessment
modeling tools will be developed and incorporated. We have completed the Spacecraft Environment and Surface Charging
tools. The Internal Charging tool is under development. During the second and third years a Three-dimensional Surface
Charging tool, a Material Properties Database tool and an Auroral Charging tool will be developed.

Introduction

Under contract to the Spacecraft Environment Effects
Program office at NASA/Marshall, we are developing a
CD-ROM/web based multimedia interactive Spacecraft
Charging Handbook with integrated, updated spacecraft
charging models. This product guides the nonexpert
through the appropriate analysis using the power of
sophisticated charging analysis tools. Figure 1 shows the
home page of the Handbook.

Figure 1. Home page of the SEE Spacecraft Charging
Interactive Handbook.

There is a critical need for increased understanding and
modeling of spacecraft charging by spacecraft designers.
Spacecraft charging assessments are needed for
designing all geosyn-chronous, mid-altitude, and polar,
low-earth orbit spacecraft. The 1984 Design Guidelines
for Assessing and Controlling Spacecraft Charging
Effects (Purvis, et. al., 1984) needs extending for use
with modern spacecraft. Additionally, the standard
spacecraft charging code, NASCAP/GEO, is a complex

tool/code to use, it does not address buried charge
buildup, is limited with respect to the geometry it can
model, and requires expertise to use.

This application applies the advances in interactive
communications using personal computers to spacecraft
design technology. It provides NASA and commercial
satellite designers and managers, spacecraft charging
researchers, and aerospace engineering students
information on how to build satellites using advanced
technologies that can survive the natural environment.
Deep dielectric charging due to penetrating electrons
(Wrenn, 1995) and reverse polarity differential charging
on solar arrays (Katz, et. al., 1998) are just two of the
phenomena studied by researchers that are critically
important to spacecraft design engineers.

For maximum accessibility, the Handbook is written
with HTML, Javascript, and JAVA and runs within a
level 4 browser, either Internet Explorer or Netscape
Navigator. This choice insures that the application can
run on both Windows (95 or NT 4.0) and Macintosh OS
7.5 computers, either stand alone or over the World Wide
Web. The application is navigated using the table of
contents on the left side of the page. There are two main
sections of the Handbook: Guidelines and Tools. The
Guidelines is a text document that provides guidance to
the spacecraft design engineer. The Interactive Tools
allow users to investigate the charging of their
spacecraft. The tools have a simple intuitive design. The
essential physics needed to understand and predict the
charging phenomena is included in the tools.

The Design Guidelines consists of four sections:
Spacecraft Charging Overview, Interactions Modeling
Techniques, Spacecraft Design Guidelines, and Control
and Monitoring Techniques. The Guidelines are accessed
by clicking on the word “Guidelines” in the table of
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contents to the left of the page. Within the Guidelines,
the chapters are navigated using the bar at the bottom of
the page. The document can be printed using the browser
print function. Figure 2 shows the beginning of the
introductory chapter.

Figure 2. Beginning of the Guidelines.

Figure 3. Illustration of several features of the tools.

Figure 3 illustrates some of the capabilities of the tools.
Whenever a tool is open, there is a plot in the upper left
corner of the tool area. The edit button brings up a
separate window to specify the minimum and maximum
axis values. This window also allows the user to specify
autoscaling or to bring up a third window in which the
plotted data is shown as a table. The data can then be
transferred to a more sophisticated plotting package. The

clear button clears the plot. Whenever the plot button
(bottom right) is clicked, the appropriate data is added to
the plot. The Add Column button permits the comparison
of named items. The pull-down menu at the top of the
column is used to specify the environment, material, or
spacecraft being displayed, to create new named items,
to delete named items, or to delete the column. The Help
button brings up a help screen.

Environment Tools

The Geosynchronous environment tool allows the user to
specify single and double Maxwellian environments.
These environments are then used by the Surface
Charging tools in their computations. The Trapped
Radiation environment tool allows the user to define an
orbit and compute the high energy electron flux from the
AE-8 model. For modeling of extreme conditions, a
multiplicative factor can be specified. The ten-hour
average electron flux is used by the Internal Charging
model. Both environment tools plot the flux as a function
of particle energy.

Material Properties Tool

The Material Properties tool allows the user to specify
the parameters needed to describe material interactions
with the plasma environment. The dielectric constant,
thickness, and conductivity are used to compute the
capacitance and conductivity from the surface of the
dielectric to the underlying conductor. The dose
enhanced conductivity parameters and the bulk
conductivity are used in computing the electric fields due
to internal charging.

The electron generated secondary electron yield governs
eclipse charging, so a good model is needed. The tools
use the same model as NASCAP/GEO (Katz, et al.,
1986). The primary electron deposits energy along its
path within the material. The energy loss generates
secondary electrons in the material proportional to the
deposited energy. The escape probability for secondary
electrons depends exponentially on the depth at which
they are generated. The yield for incident electrons of
energy Eo and angle α is given in terms of the peak yield,
the energy of the peak yield, and the four range
parameters.
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The mean depth of secondary emission, λ, is determined
automatically from the energy for maximum yield.
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The ion generated secondary yield is usually small
compared with the other currents. The same physics
model is used as for electron initiated secondaries.
Several simplifying assumptions can be made. For ions,
the stopping power is independent of path length. The
peak of the yield curve is over 100 keV for most
materials. The normal incidence yield can be given in
terms of two parameters,Yo, the yield extrapolated down
to 1 keV and Emax, the energy for maximum yield.
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The backscattered electron yield depends on the incident
energy and the average atomic number, Z, of the
material. Backscattered electrons account for about 10%
of the total current. The normal incidence yield satistifies
the following for energy greater than 10 keV.
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The photoelectron current density is provided by the
user.

Charging Tools

Figure 4, the Single Material surface charging tool shows
the components of the net current. As shown in the
figure, for the material “Black Kapton” specified using
the Material Properties tool, the environment “Worst
Case” specified using the Geosynchronous environment
floating potential of -11.2 kV in under 1 second. The
components of the current are displayed along with the
net current at 0 V and at the floating potential. tool, a
backplane bias value of 0 V and 10% of the surface
sunlit, the conducting material will reach a floating
potential of -11.2 kV in under 1 second. The components
of the current are displayed along with the net current at
0 V and at the floating potential.

Figure 4. The Single Material surface charging tool
shows the components of the net current to the surface.

Figure 5. Multi-material charging tool.
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The Multi-material charging tool shown in Figure 5
computes both overall and differential charging. Figure 6
shows a circuit diagram for a spacecraft with one
insulating surface and exposed conducting surface. The
widely differing capacitances of the surface to infinity,
CA and the surface to spacecraft ground, CAS, make this a
complex numeric problem.
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implicit time integration of the charging equations.
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The multisurface problem is solved by linearizing the
currents and inverting the matrix.
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Figure 6. Circuit model of a spacecraft with one
insulating surface.

Figure 7 shows a log scale plot of the surface potentials
computed by the tool shown in Figure 5. The tool is able
to compute the potential variation over the widely
varying time scales.
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Figure 8. The internal charging tool has one-dimensional
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Figure 7. Surface potential for the several surfaces of a
complex spacecraft..

Internal Charging Tool

The Internal Charging tool is under development in
collaboration with Robb Frederickson. The tool
computes the steady-state electric field internal to
dielectrics for either slab or co-axial geometry. The
technique is based on that described in Fredrickson et. al.
(1993). The steady state current is divergenceless. The
current has two parts: incident high-energy electrons and
conduction. As the conduction current is proportional to
the electric field, the divergence = 0 condition can be
used to compute the electric field.
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Both bulk and dose enhanced conduction are included.
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models of slab and co-axial geometries.
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The charge deposition from the high energy electrons
and the shielding of these electrons is computed from an
analytic form based on Monte Carlo calculations
(Fredrickson & Bell, 1995; Tabata, 1974). The charge
deposited is the integral over the spectrum from the
incident Trapped Radiation environment tool. The
radiation environment is the AE-8 model with an
enhancement factor to account for extrema.

( ) ( ) ( )∫ εεε= d,CSR xjxj

The charging timescale is computed from the total
charge in the insulator at equilibrium and the initial
charging current to the insulator.

Summary

When complete, this application will simplify the
development of charging immune spacecraft. Beta
testing will begin in June 1999.
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