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ABSTRACT

This paper describes an
experimental and theoretical research effort related to
the mitigation of spacecraft charging by Neutral Gas
Release (NGR).  The Space Power Experiments
Aboard Rockets programs (SPEAR I and III) [Mandel
et al., 1998; Berg et al., 1995] and other earlier efforts
have demonstrated that NGR is an effective method of
controlling discharges in space.  The laboratory
experiments were conducted in the large volume Space
Physics Simulation Chamber (SPSC) at the Naval
Research Laboratory (NRL).  A realistic near-earth
space environment can be simulated in this device for
which minimum scaling needs to be performed to relate
the data to space plasma regimes.  This environment is
similar to that encountered by LEO spacecraft, e.g., the
Space Station, Shuttle, and high inclination satellites.

The experimental arrangement consists of an
aluminum cylinder which can be biased to high
negative voltage (0.4 kV<V<10 kV) and diagnostics.
The cylinder incorporates a neutral gas release valve
designed for millisec release times, a pressure-
regulated neutral gas reservoir, and variable Mach
number nozzles.  After the cylinder is charged to high
voltage, the neutral gas is released, inducing a
breakdown of the gas in the strong electric field about
the cylinder.  Collection of ions from the newly created
dense plasma, along with secondary electron emission
from the cylinder surface, provide the return current
necessary for grounding the body.

The theoretical treatment assumes a simple
Townsend discharge along with the fundamental
assumption of exponential electron growth in an

avalanche fashion as one proceeds from the cathode
toward the anode during neutral gas breakdown in the
presence of high potentials.  In addition the nozzle
release of neutral gas is modeled and a simple linear
spatial dependence of the applied potential is assumed.
This basic model produces quite good results when
compared to the experiment.

I. Experimental Description
The SPSC is a 1.8-m diameter by 5-m long

cylindrical vacuum chamber shown in Figures 1 and 2
which can be evacuated to a background pressure near
10-6 torr.  The basic parameter regimes can be found in
[Walker et al., 1998 (a,b)].  A number of experiments
have been performed in the chamber in addition to
those described here [Amatucci et al., 1996, 1998(a,b);
Walker et al., 1995,1997, 1998(a,b)]        
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Figure 3
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                 Figure 5

    Figure 4

Figure 6

II. Electronics: charging and discharging scenario

         Figure 3 shows a schematic representation of a
one cylinder experimental arrangement whereas Figure
4 is a a photograph of a two cylinder configuration
used to simulate the SPEAR III geometry.   In the
laboratory the small cylinder in Figure 4 was removed
from the experiment and a neutral gas release valve was
placed in the large cylinder.  The single aluminum
cylinder is 10 cm in diameter and 10 cm in length.
Two separate nozzles, designated M3(Mach 3) and
M9(Mach 9) were used to release the neutral gas after
charging.

During the discharges, cylinder voltage and current
collected by the cylinder were measured as functions of
time.  These parameters are shown for a typical run in
Figure 5.  For measurement purposes, several in-house-
developed diagnostics were used including a high
voltage sensor [Siefring et al., 1995] which was
developed and used in the laboratory testing in the
determination of plasma potential.

III.  Experimental Results

In these studies we have done work related to the
effects of NGR in discharges where the voltage applied
to the cylinder is varied from about -600 V to -2400 V.
 Figure 6 is a plot of the minimum potential necessary
to initiate breakdown versus plenum pressure for three

separate gas puff species using only the M9 nozzle.
Each point in Figure 6 corresponds  to an average of
10 separate experimental runs.  From this plot one can
conclude that krypton and argon initiate breakdown at
a lower potential than neon for the same gas plenum
pressure
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Figure 7
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Figure 7 shows results of the  discharge studies for
argon only.  Each data point is again an average of 10.
The preliminary conclusion from this data is that the M9
nozzle discharges the cylinder at lower potentials than
the M3. 

IV. Theory

The Discharge Model

The study of neutral gas breakdown in the
presence of high potentials has been underway since the
beginning of this century [Townsend, 1900, 1901; Loeb,
1939;  Raizer, 1997].  The fundamental assumption is
that the number of electrons grows exponentially in an
avalanche fashion as one proceeds from cathode toward
anode:

where N0 is the number of electrons released from the
cathode and  is the Townsend ionization coefficient
and is defined as the number of ionization events
performed along a 1 cm path in the electric field
direction.  An empirical formula for  for inert gases
[Raizer, 1997] 

is used in much of the theoretical and numerical
analysis, where B1 and B2 are empirical “constants”
determined from experimental plots of the electric
field necessary for breakdown versus neutral pressure
for various inert gases.           

The condition for a self-sustaining discharge
[Raizer, 1997] is,

where i is the coefficient for electron emission from
the cathode per incident ion.   This condition
essentially states that a discharge will able to sustain
itself if each electron generated from the cathode
produces sufficient ionization (through collisions with
the neutral gas) such that the resultant secondary
emission (caused by this ionization) is sufficient to
replace at least the original electron.  For i � 0.15, for
example, the right hand side of this equation equals 2.

Expansion with nozzles

 In a nozzle the flow is primarily one
dimensional through an area which varies with
distance.  The area first constricts to a minimum at the
throat where the flow speed becomes the local sound
speed, Vt=( Tt/m)1/2 where Tt=(2/ +1)Tc is the gas
temperature at the throat. .  Using part of the analysis
by Barrere [1960, Ch. 2], we can show that the nozzle
area A and velocity V are related to the values at the
throat by,

Nozzle mach numbers are typically quoted by
using the ratio of Ve to the local sound speed, Vsl, at
nozzle exit or,
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Breakdown Voltage vs Plenum Pressure
Argon .... Experiment vs Theory
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Figure 8

Breakdown Voltage vs Plenum Pressure
Krypton ... Theoretical

Plenum pressure (atm)

0 1 2 3

B
re

ad
ow

n 
vo

lta
ge

 (
vo

lts
)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Kr-M9 vs Voltage 
Kr-M3 vs Voltage 

Figure 9

Breakdown Voltage vs Plenum Pressure
Neon ... Theoretical
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Figure 10

Here Ae is the exit area, Vs is the speed of sound in the
plenum and Te is the exit temperature which we can find
from,

Expansion after leaving nozzle

Because there is residual energy in the gas, the
expansion accelerates longitudinally and transversely.
The longitudinal acceleration is negligible, however,
because the exit temperature is small compared with the
plenum temperature, Te<<Tc.  For example, for the M3
nozzle, Te/Tc = 0.05 according to Eq. (6); for the M9
nozzle this ratio is even smaller.  Therefore, past the
nozzle it is legitimate to approximate V(z) � Ve.

Transverse acceleration is generally small as
well.  To show this, we observe that the gas can be
treated as a jet moving with a fixed longitudinal speed,
Ve, outside the nozzle.  Since the transverse velocity is
presumed small, V

z
<<Ve, the jet can be treated as a

freely expanding, long beam.  In that case the area
expands as [Fernsler et al., 1994],

where 0 = V
z
/Ve (at z=0)  is the half-angle of the

nozzle. .  This expansion produces a larger area at a
given z than simple cylindrical expansions due to the
presence of thermal energy.

V. Comparisons of Theory and Experiment

Breakdown potentials versus gas flow

Using the criterion outlined in Eq (3) above we
plot in Figures 8 through 10 the predicted breakdown
voltages for the three gases used in the experiment and
for each of the two nozzles.  The plot of Figure 8 also
shows the argon data superimposed on the theoretical
plots.  From these plots, the lightest gas tested, neon
(Figure 10), requires significantly higher levels of
release gas to break down for a given cylinder charging
voltage than either  argon or krypton.  This result is

consistent with the data shown in Figure 6 and is
indicative of the fact that krypton and argon are easier
to ionize than neon. 
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If we examine the breakdown condition of Eq.(3) in
somewhat more detail the integral appears as,

where N(z,p) is neutral density given by,

and  zL is the lower integration limit.  F0(p) is the
conserved neutral particle flux from the plenum, A(z) is
as given in Eq. (7) and Ve is the exit velocity which is
calculated from the area ratio of Eq. (4).  This relation
assumes that the velocity of the exit gas is constant as a
function of distance from the release point.  We note
specifically that zL corresponds to the surface of the
charged object where spherical symmetry is assumed,
i.e., z = 0 is taken as the origin of a charged sphere for
definition of the spatial falloff of the potential.  In this
analysis then, the electric field and potential have the
simple one-dimensional form,

where Vch is the charging potential.  With the definition
of zL as above, we are assuming that the exit area of the
nozzle is at the surface of the cylinder; therefore A(zL)
corresponds to Ae in Eq. (4) and N(zL,p) is the gas
density at the exit area face (note, not the throat).  F0(p)
is dependent upon the pressure, p, and temperature, T, in
the plenum, the release gas molecular mass, µ, and the
area of the nozzle throat, At , i.e.,

In this equation, the molecular mass, m, is in kg, p in
pascals, At in m2, T in Kelvin,  is a function of the
adiabatic constant [Walker, et al., 1998(a,b)], and R is
the universal gas constant.

Breakdown dependence on release-gas
Mach number

As demonstrated above the gas density at a
fixed distance from the nozzle  is independent of
mass; however,  not of exit velocity  and therefore
(local) Mach number as seen in Eq.(5).  Since the
variation of pressure in the plenum is essentially an
isothermal process, only the gas density is affected
and not the exit velocity as would be the case were the
temperature allowed to vary. The density decreases
going away from the cylinder as the area of the
expanding cone widens.  However, the gas exits the
M9 nozzle faster but is colder than the M3, i.e., its
perpendicular temperature is less.  Therefore, gas
from M9 expands less than from M3 so that, at a fixed
distance from the nozzle, the area of the gas front is
smaller.  This effect is much stronger than either  the
density dependence on speed or distance from the
nozzle.  The net result is that there is a higher relative
density at a fixed distance from the cylinder for the
higher Mach number nozzle and therefore breakdown
is easier.  Although not shown, the density continues
to decrease as a function of exit velocity to the point
that at the limit that the velocity ratio is 2,  we produce
an infinite area and hence a density decrease to zero.
These theoretical arguments suggest that the higher
mach number nozzles should produce breakdown with
less gas pressure than lower mach number nozzles.
These results are corroborated by the experimental
plots.

VI. Summary

We have conducted laboratory simulations
and developed a basic theoretical model of the effects
of neutral gas release on space vehicle charging in the
LEO space environment.  The experiments were
performed in the NRL Space Physics Simulation
Chamber.

The results presented here are the first stage
of a more exhaustive investigation into the optimum
choice of a release gas and release speed in order that
spacecraft which acquire potentials either through
natural or artificial means can discharge these voltages
at the lowest level possible.  The Townsend discharge
model and breakdown criterion expressed through the
integral of Eq (3) explain  experimental results quite
well.  Because of the success of this model we are in
the process of continuing work with it in order to
guide certain phases of the experimental effort and to
suggest nozzle and gas release designs for optimum
performance.
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We are able to conclude that argon and krypton
tend to discharge the payload at lower potential than
neon and that the M9 nozzle is better at discharging for
a given plenum pressure than M3 nozzle.  We are
continuing this experiment with studies using different
neutral gases and mixtures of neutral gases, with
different cylinder surfaces and with varying electron and
neutral gas environments.  In addition we are
investigating the effect of the orientation of the puff
with respect to the local magnetic field and geometrical
effects.
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