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1. SUMMARY 

1.1. Objectives 

 This document aims at guiding users of the Spacecraft-Plasma Interaction Software (SPIS) using the 
Electric Propulsion version to set-up and run simulations. This software is available on the Linux, Mac OSX 
10, Windows 7 and Windows 10. It also describes the modifications of the architecture and the models 
developed in the frame of the “Improved Modelling of Electrical Thruster Induced Plasma plume 
Interaction” activity under ESA contract number 4000116103/15/NL/LF, whose objective is to improve the 
capabilities of SPIS in order to perform more accurate simulations of electric thruster plumes, of their 
interaction with the spacecraft and of their coupling with the environment. 

1.2. This report structure 

 This document is divided into three sections: 
- User Manual. Section describes the new interfaces of SPIS and the new interactions that 

can be simulated using SPIS-EP. The set-up of these new interactions is explained. 
- Software Design. Section describes in depth the new architecture of the software. 
- Models. Section describes in details the new models implemented in SPIS-EP. 

1.3. Acronyms 

ONERA Office National d'Etudes et de Recherches Aérospatiales 
S/C  Spacecraft 
SOW Statement Of Work 
SPIS Spacecraft Plasma Interaction Software 

1.4. Reference Documents 

[SPIS] Spacecraft Plasma Interaction Software, www.spis.org 

[SUM] Spis User Guide, delivered with the SPIS package, www.spis.org 

[HV]  PLASMA CURRENT COLLECTION OF HIGH VOLTAGE SOLAR ARRAY: 
                        NUMERICAL INVESTIGATION, Hess et al, Proceedings of the 14th Spacecraft Charging  
                        Technology Conference, ESA/ESTEC, Noordwijk, NL, 04-08 APRIL 2016 1 

 [UR] SPIS-EP user requirement document 

 [SR]  SPIS-EP software requirement document 

 [FTR] SPIS-EP functional test report  
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1.5 Caution and limit of Warranty 

The present document is intended to be a simple User Manual (UM) to help the user to use SPIS in basic 
mode and follow a step-by-step simple simulation. We remind that SPIS is still an expert tool. This 
document does not attempt to provide to the future SPIS user the whole expertise and knowledge needed to 
perform the complete modelling of a spacecraft. The final confidence in the relevance and accuracy of 
simulation results depends on the user expertise and remains his responsibility. 
 
FOR THIS REASON, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT 
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING, THE 
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT 
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS 
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL 
NECESSARY SERVICING, REPAIR OR CORRECTION. 
 
SPIS is basically the coupling of an electrical circuit solver and a plasma simulation code. Plasma being by 
nature a strongly coupled and instable assembly of charged particles and electromagnetic fields, the stability 
of the simulation is not ensured in the general case. While general guidelines exist for plasma code stability, 
a strong expertise in plasma physics and plasma simulation is required to setup and interpret the result of 
SPIS simulations in which the plasma exert a strong influence on the results. Moreover, in spite of the 
simplification of the user interface, it is still strongly recommended to have good knowledge in space 
environment, space engineering and mathematical modelling before any simulation of realistic and/or critical 
systems is performed. 
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2. VERSION NOTES 

IMPORTANT NOTICE: because of the new monitor handling, the simulations built with old versions of 
SPIS have to be reset (i.e. click on Finalize Simulation in the global parameter view) in order to get the 2D 
and 3D views. 

2.1 Changelog 

Bug corrections : all bugs that have been reported were corrected, except for a bug on tabulated distribution 
that could not be reproduced. 

 
Thin elements: Many improvements concerning thin elements definition and simulation. The Poisson solver 

underwent a major revision. Some monitors were improved to refine the outputs around the 
thin elements. 

 
User interface: Group definition reworked to “hide” the parameters that are not relevant for the user. 

Monitors appear as instruments so they can be added, removed and modified during the 
simulation. 

 
Electrical circuit: Allow for the use of the wider SPICE netlist syntax. Possibility to use models, time 

varying elements, multiple grounds, ... 
 

2.2 Bug corrections and major changes 

The following table list the major changes between the version 6.0.0 and the version 6.0.4 
 

# Typea Short description Originb Emitter Statusc Long description 
1 B Exact CSat D G. Déprez S Problem of unit due to non-duplication 

of Dimscal  
2 B No RIC D G. Déprez S RIC could not be activated because of a 

wrong variable type (regression) 
3 B No volume Shading NRC S. Hess S Bug in the volume shading provoked a 

crash at initialization that led to wrong 
results 

4 B Bad Sticking computation T M. Villemant S Wrong implementation led to wring 
sticking coefficient evolution wrt. 
temperature. 

5 B Tabulated distribution D A. Waerts N Bug could not be reproduced 

6 B File writing D Several users S File was not written often enough, nor 
written to the end. Cause: JAVA never 
implemented the flush command. 

7 B Non Xe Erosion I S. Hess S Erosion for ions that are not Xenon 

8 B Edit Thin Panel groups I S. Hess S Impossible to re-edit thin panel groups 
after their first definition 

9 A Maxwell distribution bins NRC S. Hess S Problem of accuracy in the Sphere 
charging backtracking NRC due to bad 
sampling of the distribution  
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10 A Thin wire C, 
NRC 

F. Cipriani, S. 
Guillemant 

S Problem in the wire modelling detected 
by S.Guillemant led to the disconnection 
of the thin wire handling since v5.2. 
Poisson solver rewritten.  

11 U Thin element setting F M. Diaz-
Aguado 

S The settings of thin wire required the 
change of two properties, which are is 
obvious and not documented. Group 
redefinition. 

12 U Multiple 2D element F M. Diaz-
Aguado 

P Impossible to have several thin panels. 
Partially treated, by simplified UI 
settings and NUM modification. But the 
surface duplication must be made “by 
hand” in Gmsh 

13 U Monitors as Instruments I S. Hess S Monitors are defined as instruments, 
allowing a better control of the 
monitoring 

14 U SPICE netlist syntax I S. Hess S Use the SPICE netlist syntax together 
with the SPIS legacy. Allows for clearer 
description and comments. 

15 U Node naming B B. Thiébault 
(Bug 341) 

S The node name uses 2 numbers, so they 
are in good order 

16 F Time varying circuit C,D F. Cipriani, P. 
Henri 

S Request for time varying electrical 
components. Use of SPICE like models. 
Required by on-going contractual 
activities and LPC2E for Rosetta MIP. 

17 F Chamber simulation F, C A. Gourdin, P. 
Sarrailh, O. 
Jorba 

S Need for simulations with non-floating 
reference potential (e.g. chamber 
simulation) 

18 F 1D wire alone on node F, C M. Diaz-
Aguado 

P Wires had to be on nodes with surfaces. 
Now they can be alone on their node. 

19 F Changing parameters 
during simulation 

B, C B. Thiébault 
(Bug 281) 

F. Cipriani  

P Some parameters that control accuracy 
vs simulation duration can be changed 
during simulation 

20 O Singularity visualization F Several users S Non-linear fields around singularities 
can now be  visualized 

21 O Ghost surface for 3D data 
view on nodes 

F Several users S Non physical triangles appeared 
sometime between nodes. 

22 O Useless monitoring D Several users S The number of default quantities 
monitored has been decreased, better 
control by global parameters 

23 P Caching data I S. Hess S Particle data are cached to avoid 
searching long tables 

24 B View factor for large mesh D G. Déprez P View factors must be disabled if the 
mesh has more than 130000 vertices 
(JAVA array limit) 

 
aType: B Bug, U Usability improvement, P Performance improvement, A accuracy improvement, F new Functionnality, O 
Output/visualization improvement 
 
bOrigin: F community (Forum), D Direct demand to developers, C Contractual demand, I Internal development, NRC problem 
detected during NRC, V Validation activity, T Test activity, B Bug tracker 
cStatus: S Solved, P: Partially solved, N: Could not be solved. 



SEPTEMBER 2018  -15- 

 

 

3. SIMULATION SET-UP 

3.1. Plugins 

The Electric Propulsion version of SPIS introduces a new architecture using plugins instead of the usual 
monolithic architecture of SPIS. These plugins are optional: All of the key components of the SPIS 
numerical core – in particular the solvers – are gathered in the SPIS-NUM-Core package that is mandatory 
and can run in a stand-alone mode. Plugins are used to introduce new physics in SPIS. For example, all of 
the interactors, instruments and particle-related components that describe the dust-spacecraft interactions are 
gathered in the dust package. The electric propulsion physics (i.e. descriptions of thrusters, cathodes and 
related distributions) is gathered in the “electric-propulsion” package, the solar panel interactions are 
defined in the “highvoltage” panel and the erosion and contamination physics is defined in the “erosion-
contamination” package. 
 

3.1.1.  Installation 

A plugin appears as a .jar file. To install it, just copy the file in the lib directory of your SPIS distribution. It 
will be automatically loaded next time SPIS is started. 
 

 

Figure 1: lib folder of the SPIS-EP distribution (snapshot version) with several optional packages: AISEPS, Dust, Electric 
propulsion, Erosion & Contamination and High Voltages 

3.1.2. Using the plugin functionalities 

All classes that are to be instantiated explicitly by SPIS-NUM core are classes that are specified in SPIS-UI 
as SPIS local or global parameters. SPIS first tries to load the class whose name corresponds to the 
parameter as a SPIS-NUM Core class. If it does not succeed, it tries to load that class from all bundles one 
by one. It loads the class of the first bundles that contains a class with the correct name. If several bundles 
share classes with the same name (which should be avoided as much as possible but could happen with 
plugins from different origins), SPIS-NUM will use the first class it finds, which leads to an unpredictable 
behaviour. To avoid confusion it is possible (and recommended when using packages that does not belong to 
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an official SPIS distribution) to specify the plugin in the parameters by placing the name of the plugin 
between brackets {} in front of the class name. Example: putting {dust}DustSurfSource as interactorName in 
the global parameters specifies that the surface interactor DustSurfSource belongs to the dust package and 
that the class path is spis.bundles.dust.Surf.SurfInteract.DustSurfSource. 
 
The classes that can be instantiated in SPIS are: 
Name/use Belong to package Derive from class 
Volume distribution spis.bundles.*.Vol.VolDistrib spis.Vol.VolDistrib.VolDistribWithIO 
Surface distribution 
Source 

spis.bundles.*.Surf.SurfDistrib spis.Surf.SurfDistrib.SurfDistrib 

Surface Interaction spis.bundles.*.Surf. SurfInteract spis.Surf.SurfInteract.Interactor 
Volume Interaction spis.bundles.*.Vol.VolInteract spis.VolInteract.VolInteractor 
MagneticField spis.bundles.*.Vol.VolField spis.Vol.VolField.BField 
Transition spis.bundles.*.Top.Transition spis.Top.Transition.Transition 
Environment spis.bundles.*.Top.Plasma spis.Top.Plasma.Environment 
Scenario spis.bundles.*.Top.Top spis.Top.Top.Scenario 
spacecraftType spis.bundles.*.Top.SC spis.Top.SC. RLCSC 
photoelectronEnvironmentDF 
secondaryEnvironmentDF 
popXEnvrinomentDF 

spis.bundles.*.Util.DistribFunc spis.Util.DistribFunc.DistributionFunction 

erosionYield spis.bundles.*.Surf.SurfInteract spis.Surf.SurfInteract.ErosionYieldAPI 
erosionSampler spis.bundles.*.Util.Sampler spis.Util.Sampler.ErosionProductsSampler 

3.2. Geometry and Mesh 

Geometry and mesh are defined as in previous versions of SPIS. In is recommended to use small cell sizes at 
the exhaust of the thrusters in order for the plume to be well described and for the charge-exchange reactions 
to be well computed. Depending on the type of thruster surface distribution used, it is not mandatory to mesh 
the thruster exhaust. However, it is highly recommended to ensure an accurate simulation. The surface group 
identified as the thruster does not collect or emit currents (except the currents emitted by the thruster and the 
cathode that are handle specifically). This allows avoiding emission of secondary emission due to electron, 
ion and photon impact from the exhaust surface (which would be unphysical as the physics and geometry in 
the exhaust of the thruster is not described at all). This also prevents to take into account the recollection of 
the cathode electrons at the exhaust of the thruster (which would also be unphysical for the same reasons). 
If the exhaust is unmeshed, it is important to have a thruster surface that is not much larger than the exhaust 
surface. Otherwise, the currents collected and emitted by the surfaces surrounding the thruster exhaust will 
not be taken into account which may lead to unphysical results. This would in particular lead to a spacecraft 
potential heading toward the positive values due to a lack of cathode electron recollection. 
 
It may also be beneficial to use a mesh refinement in the plume region to ensure that the plume divergence 
and the charge exchanges are accurately modelled. 
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Figure 2: example of CAD with a refined plume region 

 
One of the most numerically challenging parts of the SPIS- Electrical propulsion simulation is the resolution 
of the non-linear Poisson equation. It is highly recommended to edit the mesh with Gmesh and to use its 3D 
mesh optimization methods to ensure a correct mesh quality. This quality can be checked by using the 
“Statistic” option in the tool menu of Gmesh, which gives the cell quality “Gamma” after the “Update” 
button was clicked on. It is recommended to avoid simulation with average values of Gamma lower than 0.6 
and minimal value less than 0.1. The Gamma histogram is displayed at the beginning of the SPIS simulation, 
in the Summary report window, for control. 
 

3.3. On-Ground geometry definition 

The simulation geometry is decomposed in different zones: 

 The vacuum tank by itself which is composed by two tanks that are connected (the principal tank and 
the secondary tank in which the thruster can be retracted) 

 The pumping zone which is at the opposite side of the thruster. We consider that the pumping zone is 
composed by the pumping connection itself plus the cold zones around it. 

 The thruster zone which is composed by the surfaces of the ion injection plus the body of the 
thruster. The cathode is not geometrically modelled. 

The geometry obtained is shown in the following figure. 
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Figure 3: Example of Corona vacuum chamber representation with pumping and cooling zones 

 
In the frame of this project, a geometry with parameter is provided for the user (as can be seen in the picture 
below). This geometry parameter can be changed in the file itself of using the GMSH user interface (since 
GMSH 4.0). Different parameters are grouped in 4 sections: 

 Thruster geometry 

 Thruster position 

 Thruster refinement box geometry 

 Vacuum chamber geometry 
 
The default parameters are those from the Corona vacuum chamber of ESA as represented in the previous 
figure. 
 



SEPTEMBER 2018  -19- 

 

 

 

Figure 4: Example of parameterization of the thruster and the chamber 

 

3.4. Definition of the surface properties and interactors 

The group definition offered by SPIS-Electric propulsion is similar to the previous versions of SPIS. It 
allows defining: 

3.4.1. The simulation domain and its characteristics. 

The volInteractFlag allows determining how the plasma behaves in the volume 
 0: no interactions in volume (works only with generic interactions); 
 1: plasma interacts in volume (default); 
-1: no plasma in this volume 

The plasma behaviour can be set by changing the volInteractFlag characteristics or by choosing one of the 
predefined plasma models for the volume. When the flag is set to -1, the volume is seen by the plasma as if it 
was out of the simulation domain: surface emissions occur outward of this volume, fluid distributions 
assume a 0 density and the PIC particles are not pushed. Nonetheless, the Poisson equation is solved. 
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Figure 5: predefined plasma model in volume 

 

3.4.2.  The boundary conditions 

New predefined plasma and electric field conditions were added.  
Predefined plasma conditions are: 

- Open (default): particles can be injected and lost through the surface 
- Reflective: No particles injected from the environment, while plasma particles are reflected 
- Periodic: No particles injected from the environment, while plasma particles are re-injected on the 

opposite surface 
- Absorbing: No particles injected from the environment, while plasma particles are lost through the 

surface 

 

Figure 6: predefined plasma and Poisson boundaries 

 
Predefined electric field boundaries are: 

- Fourier – Robin conditions (Default): the most general condition on the potential and the 

electric field V-E=, with =1m-1 and =0V by default. 
- Dirichlet condition: the potential is fixed, to 0V by default. 
- Fixed electric field: the electric field is fixed to a given value, 0V/m by default. 
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3.4.3. The spacecraft surface characteristics 

While functionally equivalent to the previous features in SPIS, the definition of the unmeshed surfaces has 
been simplified in the latest version of SPIS. Note that older definitions are still working (thus ensuring 
compatibility) but cannot be set under the same layout with the new interface. All the fields that were 
defined in the older version of SPIS are still present, but the fields which values are not to be modified 
(because it leads to a nonsensical setup) are now grouped in the misc. category. This simplifies the definition 
of the groups by highlighting the fields which definitions are of interest for the user. Moreover, it is now 
possible to define an arbitrary number of any thin elements. 
 

- Regular surface: to define a regular spacecraft surface, assign the “Spacecraft Surface” group 
type to a surface. 

-  

 
 
 

- Panels: to define thin panels, it is needed to define both sides of the panel as independent 
surfaces, each one facing a volume. Front side must be set as a “Panel Front Group” and rear 
side as a “Panel Rear Group”. Moreover, the panel edges should be defined as “Edge” group, 
with the “Side” property set to “Front” or “Rear”. 
 

 
 
 



SEPTEMBER 2018  -22- 

 

 

- Grids: to define a grid, assign the “Semi Transparent Grid” group type to a surface. The surface 
must be defined between two volumes. 

-  

 
 
- Wires and antennas: to define wires and antennas, assign the “Wire” group type to a 1D element. 
-  

 
 

Most of the surface characteristics were not modified in the version of SPIS Nonetheless, a novelty appears 
in the definition of the surface interactions. 
 
Surface interactions are of two types. The definition of the global interactions that applies to all spacecraft 
surfaces and that are entirely defined in the global parameter window remains unchanged. Local interactions 
that are related to a particular surface group are usually defined in the global parameter window, while their 
domain of application is defined by a value of the SourceId in the Local parameter corresponding to 1000 
plus the interactor number. 
 
In the electric propulsion version of SPIS, these local interactors now can be directly affected to the surface 
in the group editor as a device. Only one device can be defined per surface group. It still remains possible to 
define supplementary interactors using the previous method describe above. In this later case, a message will 
appear in a popup window with a warning message if the interactors are of the same type. This message has 
been added to avoid confusion and dual definition of the same interactor, nonetheless this message is only 
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informative and is not blocking. A message also appears if a local interactor is defined on a surface to which 
a source is associated. If SPIS runs in batch mode, these messages only appear in the log file. 
 

 

Figure 7: Warning messages appearing when two interactors of the same type are defined in the local and global parameters (top) 
and when a local interactor is defined on a surface associated to a source (bottom). 

 
The spacecraft surface definition categories have been reworked to simplify the setup.  Fields that are not to 
be modified by the user are gathered in a “miscellaneous properties” category. Thus, only the properties of 
interest for the user appear (in a much more limited number) in the category of interest. As a general rule, 
the categories which are frequently modified appear by decreasing order in the “Mandatory properties” 
panel, whereas those which are rarely modified (or not to be modified) appear in the “Optional properties” 
panel. The spacecraft characteristic categories of interest for the user allow defining: 

  
- The surface electrical node: this electric node corresponds to the metallic surface underneath 

the coating. For conductive coatings, this electric node also corresponds to the material surface, 
but for dielectrics an equivalent RC circuit is set between this electrical node and the surface 
elements. 

 
- The surface coating material: this material can be defined by selecting a material from the 

material databank. These materials correspond to that coating the spacecraft surface. An 
exception is for the materials to assign to the exhaust of droplet emitting thrusters. In this case 
the material to assign to the exhaust is that corresponding to the droplets. 

  
- The macroscopic characteristics: depending on the type of element (regular surface, grid, wire 

or panel), this allows to define the characteristic thickness of the elements. For surfaces, it 
allows to define the structure thickness (SurfThicknessS or EdgeRadiusS) and for group 
allowing it the coating thickness (MatThickness).   Moreover, this also permits -to define the 
coating material temperature and exposure to the sun flux (used if set so in the global 
parameter), which is of importance for contamination studies. 

 
- The device characteristics: this allows defining the behaviour of the surface by assigning to it 

an “interactor” (i.e. a physical model of the interaction of this surface with the plasma). This is 
how to define a thruster. SPIS provides a databank of predefined thruster models, amongst 
which the SPT100 Hall thruster.   

 
- The potential and currents across the surface: used to fix the initial potential and currents at the 

surface. 
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- Global interaction characteristics: used to turn on/off the global interactions, i.e. the photo- and 
secondary emissions, and to force the currents on surfaces. The source property is deprecated 
and should not be modified by the user. Warning messages appear if a source or and interactor 
is associated to the surface in addition to a device. 

 
- Miscellaneous properties are specific to the type of surface element and should not be modified 

by the user. 
 

 
 

 

Figure 8: New layout for the definition of a regular spacecraft surface. The number of categories and of characteristics per 
categories has been reduced to those of interest for the user. Other characteristics are gathered in the misc. properties category. 

 
 

3.4.4. Device characteristics 

The devices are created by defining the optional device property of a spacecraft surface. Some local 
interactors have predefined templates. It is noticeably the case for the Thruster and Solar Panel interactors. 
Once selected, the device property appears in the group editor tree in a manner similar to the surface 
materials. 
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Figure 9: Screen capture of the group editor while selecting a predefined device property (Local interactor). A device was already 
attributed to this surface and its characteristics appear in the group editor tree on the left panel. 

The device characteristics are complex and appear as a sub-tree. An example of such device characteristics is 
displayed on Figure 10. It is composed of several sub-characteristics. First of all, internal system 
characteristics appear at the top level in the same manner that for the material characteristics, they serve as 
references for the numerical core and should not be modified by the user. All user defined characteristics are 
gathered in the top level property named the same way than the device property. 
 
It is composed of characteristics (meaning a name-value-unit triplet) and properties (meaning a sub-tree 
element). Two characteristics are mandatory and independent of the device as they are use to define the 
interaction: the interactorType is a String naming the interactor type to use (here a Thruster) and the 
interactorFlag is an integer set to one to instantiate the interaction and to zero to ignore it. 
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Figure 10: details of a device (here a thruster) characteristics 

 
Other characteristics appear at the same level and serve to set up the interaction (in our example, they define 
the cathode electron characteristics). Templates may not define all of the possible characteristics. To define a 
new characteristics, right-click on the property to which you want to add the characteristic and select “New 
empty characteristic”. A popup widow appears in which you can define the characteristic name and type 
(Figure 11). 

 

Figure 11: Addition of a new characteristic to the “Generic Thruster-1” device property. 

 



SEPTEMBER 2018  -27- 

 

 

It is also possible to define at the same level sub-properties (sub-trees), themselves containing 
characteristics. Their (optional) use depends on the device. As examples, they are used to define thruster 
populations for thruster devices and define solar panels elements for high voltage solar panels. 
 
Templates of these devices usually provide predefined properties. However, it may be needed to add new 
ones (to add populations for thrusters or sub panel for solar panels, for example). To possibilities are offered 
to add new properties. The most general way is to create a new empty property by right-clicking on the 
device property and selecting “add new empty sub-property” (Figure 12). There are no restrictions or 
recommendations on the naming of the sub-properties, as this name is not accessible to the numerical kernel. 
Then, it is possible to fill the sub-property with new characteristics as discussed previously. 
 

 

Figure 12: Addition of a new empty property to the “Generic Thruster-1” device property. 

 

The other possibility is to insert a predefined property. A few templates of population descriptions have been 
defined for thruster populations. To use these template, right-click on the device property and select “add 
sub property from catalog”. A popup window appears that provides the list of existing templates. The 
thruster distribution templates can be found in the “ThrusterDistribution” tab (Figure 13). 
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Figure 13: Addition of a new property to the “Generic Thruster-1” device property using templates. 

 

3.5. Thruster settings 

3.5.1. General considerations 

Thrusters can be defined in SPIS electric propulsion by setting the Device property of a group in the group 
editor. The InteractorType characteristic must be set to “Thruster” and the InteractorFlag characteristic set 
to 1. Other characteristics may be added at this level to determine the cathode associated to the thruster and 
the cathode electron properties. The thruster definition itself is done through the definition of population 
emitted by the thruster. For each population (or group or population) and new sub property must be defined 
(right click on the thruster property and select “add new characteristic”). 
 
Each population must contain a species name (specified by the “Species” string characteristic), which 
corresponds to the chemical formula of the species. A special case concerning droplets is detailed at the end 
of this chapter. For Maxwellian population distributions or legacy distributions (see hereafter) it is possible 
to define several populations at the same time is these populations are different levels of ionization of the 
same neutral species. In this case, the ion1Fraction and ion2Fraction characteristics must be defined. An 
example of multiple populations is given in the “LegacyMaxwellianThruster” template. 
 
For each population, the thruster source model is defined by the “Distrib.” property. This property default 
value is “ThrusterSurfDistrib” which corresponds to the generic thruster source model.  
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It is also possible to specify how each thruster population is model in volume by specifying the “VolDistrib.” 
characteristic. This characteristic default value is “PICVolDistrib” which corresponds to population 
modelled by numerical particles. 
 

3.5.2. Thruster electrical properties 

The capacitance of the thruster is automatically recomputed is there are other surfaces than that of the 
thruster. Because the thruster emits very dense plasma compared to the natural plasma in which the 
spacecraft evolves, the sheath size above the thruster is much smaller than around the other parts of the 
spacecraft. Thus, the thruster capacitance is multiplied by the environment Debye length divided by the 
thruster plasma Debye length.  
 
The currents emitted and collected by the thruster are automatically set to 0. A net thruster current is 
computed by the thruster interactor and used for the spacecraft circuit calculations. This avoids in particular 
having unphysical secondary electrons currents emitted from the thruster. 
 
Because of the particular treatment imposed to the surfaces corresponding to the thruster, it is recommended 
to attribute to each thruster an independent electrical node. 

3.5.3. Thruster axis computation 

In the group editor, for a spacecraft group, the device property is used to indicate devices types such as 
thrusters. If at least one group has a thruster type, an automatic computation of the thruster axis is performed. 
It is necessary for several reasons: 

 It is used to define the thruster position and orientation in SPIS-NUM, which are used in particular 
to define the sources of thruster species. 
 

 The thruster axis is used for a tailored data mining operations: the probing of data along the thruster 
axis. This option is presented in section 6.2. 

 
The thruster axis is automatically computed for each spacecraft surface group type with a device property 
defined in the group editor. Several thruster axes may be associated with one spacecraft group type with a 
device property if there are several non-continuous surfaces. More information on the thruster axis 
computation can be found in section 4.6. 

3.5.4. Thruster parameter verifications 

After validation of the global simulation parameters, before the start of the simulation, the thruster 
parameters are computed from the numerical distribution associated to the thruster. The thruster thrust, mass 
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flow, current power and specific impulse are computed and some moments of each population distribution 
are displayed. 
The information appearing in this popup window is not a reminder of the user settings, it is actually 
computed by running the thruster population emission and computing the moment of the emitted particles. 
 

 

Figure 14: panel that list the thruster parameters appearing at the end of the simulation definition phase. For batch simulation, 
this information only appears in the log file. 

 

3.5.5. Legacy thruster models 

3.5.5.1. Maxwellian Thruster 
 
To use the legacy Maxwellian thruster model, the “Distrib.” Property must be set to “MaxwellianThruster”. 
The current, temperature and mach number properties must be defined or it should be possible to compute 
them from the specified scalar properties specified (amongst density, massflow and velocity). 

 This legacy thruster model uses an old particle sampler which badly samples the drifting Maxwellian 
distributions and underestimates the population kinetic energy by a factor of two. As this function is used for 
the fitted AISEPS distributions, it cannot be changed without new fits of the AISEPS thrusters. 

3.5.5.2. Axisymetric model 
 
To use the legacy Axisymetric thruster model, the “Distrib.” Property must be set to 
“AxisymTabulatedVelocitySurfDistrib”. The current properties must be defined or it should be possible to 
compute it from the specified scalar properties specified (amongst density, massflow, temperature, mach 
number, velocity). The tabulated distribution shall be in a file named “SourceXAxisymData.txt”, where X is 
the number of the thruster.  
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3.5.5.3. AISEPS Thruster 
 
To use the legacy AISEPS thruster model, the “Distrib.” Property must be set to 
“AisepsThrusterSurfDistrib”. Moreover, the AISEPS plugin must be installed. The current properties must 
be defined or it should be possible to compute it from the specified scalar properties specified (amongst 
density, massflow, temperature, mach number, velocity). The thruster parameters must be gathered in an 
AISEPS file whose name is specified by the “SourceFile” property of the thruster.  
 
 

3.5.6. Generic thruster model 

The generic thruster model that is provided with the electric propulsion package provides the user with more 
flexibility for the definition of the thruster population distribution. The generic thruster model is selected by 
default, but it can be explicitly defined by setting the “Distrib.” property to “ThrusterSurfDistrib”. 

3.5.6.1. How to define distribution 
 
User can define the distribution and the thruster geometry in many ways. The definition used by SPIS is 
determined by a sequential order presented hereafter. For each parameter to determine, SPIS uses the first 
method for which all the mandatory parameter are provided in the distribution characteristics (example: 
SPIS will define the energy distribution from a 1D tabulated distribution if the f(energy) parameter is 
defined). Details and examples of 1D and 2D distribution settings are given in sections 3.5.6.3 and 3.5.6.4. 
 
SPIS determine four main characteristics of the thruster, in this order: 
 

(1) The thruster geometry definition 
 
The thruster geometry can simply correspond to the geometry of the group on which it is defined. 
This is the default case, but it is also possible to specify the geometry of the thruster in the population 
distribution definition in which case the thruster exhaust is not necessarily meshed. The radial 
dependency of the distribution is only possible if the geometry is specified. The geometry is selected 
by the “geometry” property of the population distribution and can be either “annular”, “circular” or 
“rectangular”. For the annular geometry, it is needed to specify the “radius” and “innerradius” 
properties. For the circular geometry, only the “radius” property is needed. For the rectangular 
geometry, the “sizex” and “sizey” properties must be defined. 
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(2) The energy distribution 
 

a. 1D distribution: SPIS will define the energy distribution from a 1D tabulated distribution if 
the f(energy) parameter is defined as two seriesOfDouble, the first one giving the energy in 
eV, the second the distribution. An example of such a distribution is shown in section 3.5.6.3. 

 
b. 2D energy-radius distribution: SPIS will define the energy distribution from a 2D tabulated 

energy versus radius distribution if the f(energy,radius) parameter is defined as a 
matrixOfDouble, with the abscissa (first column) being the energy in eV and the ordinate 
(first row) the radius in meters. The rest of the components stand for the distribution. An 
example of such a distribution is shown in section 3.5.6.4. In this case, the radial distribution 
is defined at the same time than the energy distribution. 

 
c. 2D energy-angle distribution: SPIS will define the energy distribution from a 2D tabulated 

energy versus radius distribution if the f(energy,angle) parameter is defined as a 
matrixOfDouble, with the abscissa (first column) being the energy in eV and the ordinate 
(first row) the angle in degrees. The rest of the components stand for the distribution. An 
example of such a distribution is shown in section 3.5.6.4. In this case, the angular 
distribution is defined at the same time than the energy distribution. 

 
d. Maxwellian distribution: SPIS defines the energy distribution from the temperature and the 

Mach number. 
 

(3) The radial distribution 
If the radial distribution was not defined at the same time than the energy, then: 

 
a. 2D radius-angle distribution: SPIS will define the energy distribution from a 2D tabulated 

energy versus radius distribution if the f(radius,angle) parameter is defined as a 
matrixOfDouble, with the abscissa (first column) being the radius in meters and the ordinate 
(first row) the angle in degrees. The rest of the components stand for the distribution. If the 
angle distribution was defined at the same time than the energy, this does not change the 
angular distribution. Then, it only gives the radius distribution for a given angle; otherwise 
the radial distribution is defined at the same time than the energy distribution.  

 
b. 1D distribution: SPIS will define the radius distribution from a 1D tabulated distribution if the 

f(radius) parameter is defined as two seriesOfDouble, the first one giving the energy in eV, 
the second the distribution. 

 
c. Predefined functions: if the f(radius) parameter is defined as a String or not defined, then the 

radial distribution is either “uniform” (default), “cosine” or “cosine2” (cosine squared). 
To be defined, a radial distribution needs that the thruster exhaust geometry be explicitly defined. 
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(4) The angular distribution 

If the angular distribution was not defined at the same time than the energy or the radius, then: 
 

a. 2D energy-angle distribution: SPIS will define the energy distribution from a 2D tabulated 
energy versus radius distribution if the f(energy,angle) parameter is defined as a 
matrixOfDouble, with the abscissa (first column) being the energy in eV and the ordinate 
(first row) the angle in degrees. The rest of the components stand for the distribution. As the 
energy distribution was previously determined in (1), it only gives the angle distribution for a 
given energy; 
 

b. 2D radius-angle distribution: SPIS will define the energy distribution from a 2D tabulated 
energy versus radius distribution if the f(radius,angle) parameter is defined as a 
matrixOfDouble, with the abscissa (first column) being the radius in meters and the ordinate 
(first row) the angle in degrees. The rest of the components stand for the distribution. If the 
angle distribution was defined at the same time than the energy, this does not change the 
angular distribution. As the radius distribution was previously determined in (1), it only gives 
the angle distribution for a given radius; 
  

c. 1D distribution: SPIS will define the angular distribution from a 1D tabulated distribution if 
the f(angle) parameter is defined as two seriesOfDouble, the first one giving the angle in 
degrees, the second the distribution. 

 
d. Divergence: SPIS will define the angular distribution as a cosine function between two angles 

defined by the “divergence” and “innerdivergence” parameters. The emission axis is the 
difference of these angles. “innerdivergence” fixes the maximum angle in the direction 
pointing toward the thruster axis, while the “divergence” fixes the maximum angle in the 
outward direction. If “innerdivergence” is not defined, it has the same value than 
“divergence”. If “divergence” is not defined it default value is 90°. 

 

3.5.6.2. Maxwellian thruster 
 
To define a Maxwellian thruster, one should proceed in the exact same way than for the legacy Maxwellian 
thruster, except for that the “Distrib.” Property should be “ThrusterSurfDistrib” (or be absent). The current, 
temperature and mach number properties must be defined or it should be possible to compute them from the 
specified scalar properties specified (amongst density, massflow and velocity). 
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3.5.6.3. Setting up 1D energy, radial and angular distributions 
 
To set up 1D energy, radial or angular distributions, you must specify in the species distribution parameters 
the name of the distribution you intend to define by right clicking on the distribution name and selecting 
“add a new property”. This property name must be f(energy) for the energy distribution, f(radius) for the 
radial distribution and f(angle) for the angular distribution. In any cases, the type of the property must be 
seriesOfDoubles. Then edit the distribution value by clicking on the “Edit Data” button in the lower left 
window. A new window appears with a two column table. The first column stands for the energy, radius or 
angle values, and the second for the distribution values. The first row is used to define the units. Energies 
must be in [eV] while radii are in [m]. 
 
Once the distribution is validated, it is possible to display it by clicking on the “Plot” button.  
 
An example of a 1D energy distribution is provided in the “MaxwellThruster1D” template provided with the 
SPIS electric propulsion distribution. To use it, select “MaxwellThruster1D” as the Device Property of the 
group that stands for the thruster. The singly charged Xenon ions are defined as a shifted Maxwellian 
distribution similar to that defined in section 3.5.6.2, but they are defined by a 1D energy distribution and a 
1° angular divergence. 
 

 

Figure 15: Example of 1D distribution in Energy. (Right) table of data, (left) distribution plot. 

 

3.5.6.4. Setting up 2D energy, radial and angular distributions 
 
To set up 2D energy, radial or angular distributions, you must specify in the species distribution parameters 
the name of the distribution you intend to define by right clicking on the distribution name and selecting 
“add a new property”. This property name must be f(energy,radius) for the energy vs radius distribution, 
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f(energy,angle) for the energy vs angle distribution and f(radius,angle) for the radial vs angular distribution. 
In any cases, the type of the property must be matrixOfDoubles. Then edit the distribution value by clicking 
on the “Edit Data” button in the lower left window. A new window appears with a matrix table. The first 
column stands for the energy or radius values, and the first numerated row for the radius or angle values. The 
first rows without numbers are used to define the units. Energies must be in [eV] while radii are in [m]. 
 
Once the distribution is validated, it is possible to display it by clicking on the “Plot” button.  
 
An example of a 2D energy distribution is provided in the “GenericThruster” template provided with the 
SPIS electric propulsion distribution. To use it, select “GenericThruster” as the Device Property of the group 
that stands for the thruster. The doubly charged Xenon ions are defined as a shifted Maxwellian distribution 
similar to that defined in section 3.5.6.2, but they are defined by a 2D energy vs angle distribution. 
 
 

 

Figure 16: Energy –angle distribution of the doubly charged Xenon ion in the GenericThruster template. 

3.5.6.5. Setting up droplets 
 
It is possible to define droplets emitted by the thruster by setting the species type to “dust”. Then the droplet 
radius, mass and charge are defines in by the “dustDefaultRadius”, “dustDefaultMass” and 
“dustInitialCharge” global parameters. Note: the dust package must be installed (it is by default in the 
Electric propulsion distribution). 
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3.5.7. Thruster magnetic field 

It is possible to specify magnetic fields associated to the thruster in the group editor. To do so, the name of 
the magnetic field model must be assigned to the thruster properties named “MagneticField”, 
“MagneticField2”… The parameters of the magnetic field models must be defined as for the environment 
magnetic fields. 

3.5.8. Setting a thruster from a ion current fit measured on a shell 

The definition of a thruster flux angular distribution is possible by only defining the current measured on a 
shell at a certain distance of the thruster. For example to define an ion distribution in angle from 
measurement on a shell at 0.7 m from the thruster (see below example from AISEPS project). 

 

Figure 17: Current density of ions measured as a function of angle at a distance of 0.7 m (data extracted from AISEPS 
documentation) 

In order to define such a thruster, the user has to define in the local parameters a new type of thruster: 
ThrusterFromExp instead of Thruster.  
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Figure 18: Local parameters of a fittable thruster 

 
In addition to the standard parameters of a thruster, the user has to define a shell radius (i.e. shellRadius and 
performFitFlag parameters). The tabulated current measured has to be define in the parameter j(angle). 
 
This thruster type creates automatically an instrument that measures the flux on a shell during the simulation 
and that performs an optimisation of the divergence angle of the thruster (if the performFitFlag = 1). 
 

 

Figure 19: View of the current density in log scale as a function the angle on the shell at 0.7m at different time. At t=0, a large 
divergence is defined (curve in purple) and the divergence is automatically decreased (last time step = orange) to reach the 
measured current (green curve) 



SEPTEMBER 2018  -38- 

 

 

At the end of the simulation, the parameters of the fit are automatically saved in a form of a new thruster 
inside the device catalogue (i.e. in a xcat file format). This new thruster can be used in new simulation 
without doing a parameter fit each time. 

3.5.9. Switch On/Off of the thruster 

It is possible to switch On/Off the thruster by selecting and editing in the instrument panel the Thruster 
instrument that belongs to the “Electric propulsion device currents” category of instruments. The thruster 
switch is the thrusterOn parameter in the “Interaction parameters” tab. A value of 1.0 means that the 
thruster is on. Put it to 0.0 to switch the thruster off. It is also possible to schedule the start and stop times of 
the thruster by setting the start time and stop time parameters (in seconds). 

 

Figure 20: in order to switch On/Off the thruster, select the thruster monitoring instrument and change the value of the thrusterOn 
parameter. 

 
The thruster can only be fully turned off if the population distributions correspond to the 
“ThrusterSurfDistrib” generic type. Otherwise, the current emitted is divided by 1020 but not set to 0 (which 
allows switching on the thruster later by multiplying the current by 1020). 
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Figure 21: Simulation of a thruster and cathode switch off in a 2.8eV plasma. The thruster and cathode were switched on until 
0.2s and then switched off. (Left) Thruster (blue) and Cathode (green) emitted currents. (Right) Thruster assembly (purple) and 
spacecraft ground (blue) potentials. The spacecraft ground potential first gets very negative because of the cathode electron 
recollection and return gradually to a few Volts negative by coupling with the environment. 

 

3.6. Cathode settings 

3.6.1. Setup of a cathode linked to a thruster 

In order to associate a cathode to the thruster the Cathode characteristic of the thruster must be set to 1 or the 
name of the cathode model to use. SPIS-EP only delivers a single cathode model named “Cathode” which is 
used by default. 
Depending on the cathode model, several characteristic may be specified. For the default model, one can 
specify:  

- The cathode electron distribution: The volume distribution to be used to simulate the electrons 
must be defined by the parameter. The list and description of the distribution of cathode electrons 
is available in sections 5.1.1 and 5.1.2.   

- The cathode electron temperature: The electron temperature must be defined in eV as a double 
characteristic named “e- temperature”; 

- The cathode position: The 3 component vector defining the position of the cathode in the 
simulation reference frame can be defined as a seriesOfDouble characteristic named 
“cathodePos.”. 

- The cathode direction: The 3 component vector defining the direction of the cathode in the 
simulation reference frame can be defined as a seriesOfDouble characteristic named 
“cathodeDir.”. 

- It is also possible to define a cathode voltage bias relative to the thruster using a Double 
characteristic named “cathodeBias”. 
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3.6.2. Setup of a stand-alone cathode 

It is possible to define a cathode without associating it to a thruster. Then, it as to be defined as a new 
surface interactor in the global parameters by setting “InteractorTypeX=Cathode” (with X the interactor 
number). 
The cathode parameters must also be defined in the global parameters: 

- The cathode electrical node is set with the integer parameter CathodeXElecNode. 
- The cathode electron distribution: The volume distribution to be used to simulate the electrons 

must be defined by the global parameter CathodeDistribution. The list and description of the 
distribution of cathode electrons is available in sections 5.1.1 and 5.1.2.   

- The cathode position: The 3 component vector defining the position of the cathode in the 
simulation reference frame can be defined as a series characteristic named “CathodeXposition” 

- The cathode direction: The 3 component vector defining the direction of the cathode in the 
simulation reference frame can be defined as a series characteristic named “CathodeXdirection” 

- It is also possible to define a cathode voltage bias relative to the thruster with the 
“CathodeXBias” parameter.  

3.6.3. Switch On/Off of the cathode 

It is possible to switch On/Off the thruster by selecting and editing in the instrument panel the Cathode 
instrument that belongs to the “Electric propulsion device currents” category of instruments. The cathode 
switch is the cathodeOn parameter in the “Interaction parameters” tab. A value of 1.0 means that the 
cathode is on. Put it to 0.0 to switch the cathode off. 
 

 

Figure 22: Setting of the cathode switch On/Off. 

3.6.4. Biasing the cathode 

It is possible to impose a voltage bias to the cathode. This bias corresponds to the voltage difference between 
the cathode and the thruster exhaust and is in principle negative (cathode more negative than the exhaust). It 
effectively acts by modifying the reference density for the cathode electrons (see section 5.1.1), this density 

is divided by ට1 െ ௘௏

௞்
 to model the fact that the electrons at the cathode exhaust are accelerated to 

neutralized the high density at the thruster exhaust. For a model as generic as the adiabatic model, this bias 
should be approximately equal to the CRP, but model specific models such as those from UC3M already 
take into account the standard CRP of the cathode, so it should be set to 0V (or not set at all). 
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3.6.5. Multi-Cathodes 

3.6.5.1. General considerations 
The multi cathode functionality aims to equilibrate the current balance between two different cathodes in 
case of different thrusters are implemented on the spacecraft. Due to difference in the electric circuit, on the 
plasma behaviour or to voltage bias, even if the thrusters and cathodes are the same, the cathode current can 
be not identic from the cathode. In another sense, basically, a cathode is made to neutralize the ions coming 
from its thruster but due to external component it could be not the case. 
The multiple cathode interaction is designed as a surface interaction in SPIS that can be activated or not in 
the global parameters of the IME. This interactor computes the correlation coefficients between an ion 
plume and the electrons population coming from all cathodes: 

ݎݎ݋ܿ ൌ
ൈ௡௘ߪ

ߪ ൈ ௡௘ߪ
 

With ߪൈ௡௘ the cross variance of the density of electron of a cathode with the density of ions of a thruster 
plume, ߪ  the variance of the thruster plume density and ߪ௡௘ the variance of electron cathode density.  
When a correlation is found between the densities of the ion plume of a thruster and the electron population 
of another cathode, a fraction of the ion density from the plume is exchanged with the other plume. This 
fraction of ion will be neutralized in the next iteration by the new cathode. 

3.6.5.2. Multi-Cathode interactor settings 
 
The multiple cathodes interactor should be created in SPIS as a standard surface interaction that is defined in 
the Global Parameter Editor as follow: 
 

 

Figure 23: Settings of the multi-cathode parameters. 
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3.6.5.3. Example 
 
In the following example, two SPT100 thrusters have been selected with the same distribution of ions and 
the same current of ions (i.e. 4.5A each) but the cathode have been considered differently with: 

 Two different electron models  

 Two different electron temperatures 
 

 

Figure 24: Geometry and settings of the thrusters and associated cathodes. 

 
In the next figures, the current emitted by the cathode and the surface potential can be observed during the 
course of the simulation. 
 

 

Figure 25: evolution of the surface potentials and currents emitted by the cathodes and thrusters. 
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After 0.8 ms, the current and the potential stabilize to different values due to the fact the electron 
temperature is not the same in the both thrusters. The thruster with the electron temperature higher tens to 
neutralize a larger part of the ions plumes. Instead to read a current of 4.5A, the first cathode stabilizes to a 
current of 0.6 A and the second cathode to a current of about 9 A. 
 
The potential of the cathode is also not the same at the end of the simulation. The body of the thrusters tends 
to about -30V, the reference potential of the first thruster tends to +48 V and the thruster 2 to +40 V. 
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3.7. Solar panels and exposed conductors 

3.7.1. Setting 

 

Figure 26: Settings of a solar panel using the template 

 
The high voltage elements can be set in the simulation by defining a device property with the interactorType 
HVSolarArray or HVConductor. It is recommended to use the templates as a starting point to define the 
interactions. 
 

3.7.2. High Voltage Solar Array 

In order to simulate the current collection by unmeshed interconnects on the solar arrays it is needed to set 
the interactorType as HVSolarArray. A solar array definition is done through the definition of sub-elements: 

- Solar Cell 
o Thickness: thickness of the solar cell (excluding the cover glass) 
o CGThickness: thickness of the cover glass 
o Length: dimension along the string direction 
o Width: dimension perpendicular to the string direction 
o IntercoNb: number of interconnects per cell 
o Voltage: voltage across the solar cell 
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- Interconnect 
o GapSize: size of the gap between cells 
o LoopHeight: largest distance between the interconnect and the insulating substrate. 
o Width: size of the interconnect along the gap 

- Panels 
o The panel can be divided into subpanels. The template proposes only one subpanel, but 

other can be added following the same pattern. These panels can be wired in series 
(panelWiring: serial) or in parallel (panelWiring: parallel) 

o The subpanels have a position defined by the position of the (x0,y0) corner in the group 
surface reference plane (posX and posY). This reference plane is computed by SPIS as 
follows: z is the normal to the solar panel surface oriented toward the plasma, x is along 
the shortest dimension of the panel and y is along the longest dimension of the panel. It is 
recommended to start a very short simulation and to have a look at the interconnect 
potential map in the data mining section to ensure that the panel position and orientation is 
correct. 

Figure 27: orientation of the panel reference frame 

 
 
 
 
 
 
 

o Subpanel may be composed of several string (StringNb), themselves composed of 
substrings (SubStringNb). Strings are wired in parallel while substrings are in series. 

o From a layout point of view, substrings of the same strings are always contiguous. 
o The successive strings and substrings can be disposed in parallel (potential gradient 

always in the same direction) or in zig-zag (potential gradient direction alternates). This is 
set by setting [Sub]StringLayout to “=” or “z”. 

3.7.3. Exposed conductor 

It is possible to obtain the current collection by an unmeshed exposed polarized conductor by setting the 
interactorType to HVConductor. The conductor is defined by: 

o posX and posY define its position in the group reference frame (see Figure ). 
o width and length define its size. 
o Orientation defines its orientation (in degrees) relative to the x direction. 
o BusPotential defined its potential relative to the group electrical node potential. 
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3.8. Erosion 

Up to SPIS version 5.2, the erosion modelling in SPIS was hard coded and the user could only turn it on or 
off without any control on the physical model. This has been modified in SPIS-EP, allowing the user to 
select the physical models determining (1) the yield as a function of the impinging particle energy and 
incidence and (2) the distribution of the eroded product(s). The yield model can be selected thanks to the 
erosionYield global parameter, whereas the product distribution can be selected with the erosionSampler 
global parameter. 

3.8.1. Garcia-Rosales-Bodhansky-Oeshner yield model (default) 

This model is the default model. In order to preserve backward compatibility of the SPIS simulation files, it 
will be used if the erosionYield  parameter is not defined. To explicitly select this model, erosionYield must 
be set to “GRBO_Oeschner_ErosionYield”. The model is based on the model published in C. Garcia-Rosales 
et al, J. of Nuclear Materials 218 (1994) 8-17 for the energy dependence and on the Oeshner model for the 
incidence dependence. 

3.8.2. Garcia-Rosales-Bodhansky-Yamamura yield model 

This model is part of the erosion_contamination bundle. It is included in the SPIS-EP distribution. In case an 
error message appears indicating that the class was not found, please check that the plugin file is present in 
SPIS lib directory. To select this model, erosionYield must be set to “GRBO_Yamamura_ErosionYield”. The 
model is based on the model published in C. Garcia-Rosales et al, J. of Nuclear Materials 218 (1994) 8-17 
for the energy dependence and on the Yamamura model for the incidence dependence. 

3.8.3. Tabulated erosion yield 

This model is part of the erosion_contamination bundle. It is included in the SPIS-EP distribution. In case an 
error message appears indicating that the class was not found, please check that the plugin file is present in 
SPIS lib directory. To select this model, erosionYield must be set to “Tabulated_Erosion_Yield”. In this 
model, the yield is defined by the user for each couple of impinging species and material. For each material, 
a property named “XXXErosionYield” (with XXX the species name) must be created. This parameter is of 
type matrix, and gives the yield as a function of the energy (in eV) and of the pitch angle (in degrees).  

3.8.4. Tondu eroded product model (default) 

This model is the default model of eroded product emission. In order to preserve backward compatibility of 
the SPIS simulation files, it will be used if the erosionSampler parameter is not defined. It is based on the 
Tondu model. 



SEPTEMBER 2018  -47- 

 

 

3.8.5. Tabulated eroded product model 

This model is part of the erosion_contamination bundle. It is included in the SPIS-EP distribution. In case an 
error message appears indicating that the class was not found, please check that the plugin file is present in 
SPIS lib directory. To select this model, erosionSampler must be set to “TabulatedProductSampler”. In this 
model, the emission pattern is defined by the user for each triplet of impinging species, material and erosion 
product. For each material, a property named “XXXErosionProducts” (with XXX the species name) can be 
created. It is not, a single generic erosion product will be created. This parameter is a string listing all 
products by their chemical formula, separated by a comma. The branch ratio of all product can be specified 
by writing it as a float separated from the chemical formula by an underscore. Example: “Al_0.1,C_0.9” 
indicates that the eroded products are for 90% carbon and for 10% aluminium. 
 

If the eroded products are specified, the emission pattern of each must be specified in two material properties 
named “XXX_YYY_ErosionDir” and “XXX_YYY_ErosionWidth”, where XXX is the impinging species and 
YYY the eroded product. If the eroded products are not specified, the emission pattern is specified by 
material properties named “XXX_ErosionDir” and “XXX_ErosionWidth”. 
 

These parameters are of type matrix, and gives the direction of emission (ErosionDir) and the angular 
dispersion (ErosionWidth) of the eroded product(s) as a function of the energy (in eV) and of the pitch angle 
(in degrees) of the impinging species. Both the erosion direction and the angular dispersion are given in 
degrees. 

3.9. Contamination 

It is possible to estimate the level of contamination of the spacecraft due to heavy particle collection by 
setting up the Contamination interactor in the global parameters as a surface interactor. All particles heavier 
than helium are taken into account. The flux of particles impinging the spacecraft is collected a fraction of 
which sticks to the spacecraft, the rest being reemitted as a Lambertian whose temperature is the surface 
temperature. The sticking coefficient depends on the spacecraft surface temperature as: 
 

 ܵ ൌ ൝
1

0.5 െ ሺܶ െ ଴ܶሻ ∗ ∆ܶିଵ

0

ܶ ൏ ଴ܶ െ 0.5∆ܶ
ܶ ൐ ଴ܶ ൅ 0.5 ∆⁄ ܶ

 

 
The parameters T0 and ∆ܶିଵ are material parameter in eV named “STKE” and “STKW”, respectively.By 

default, T0 is equal to 1012 eV and ∆ܶ  value is equal to 1010 eV, i.e. the sticking coefficient equals 1. 
Along with the particles that do not stick to the surface, a part of the particles that is deposited on the surface 
evaporates. The fraction of the contaminant that evaporates is: 
 

 E=1-exp(t.-1) 
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where the contamination evaporation time scale -1 is a material parameter in s-1 named “CETS”. By default 

-1 equals 0s-1 (no evaporation). 
 
The contamination integration can be accelerated by setting the parameter contaminationSpeedUp to the 
desired acceleration factor. 
 

3.10. Volume interaction 

3.10.1. General considerations 

Several general actions have been taken to improve the accuracy of the volume interactions: 
(1) The interactions may now be computed along the particle trajectory, i.e. once in each cell that is 

crossed by each interacting particles.  
This is done by default when using the GenericVolInteraction which is available in the 
Erosion&Contamination package. It is also possible to use this functionality with the older 
CEXInteractor available in SPIS-Core by setting the VolInteractXTrajectory flag to 1.  
Although this leads to more accurate results, it also results in slower simulations (because more 
computations are needed). 

(2) The sampling of the products is improved to favour the particles that imping the satellite surfaces. 
This allows getting a better statistics for erosion computations. 

(3) The generation of fast neutral is taken into account. For accuracy and simulation speed reasons, 
fast neutrals are not simulated are particles but there flux is computed using a factor of view 
approach between the 3D source distribution and the satellite surfaces. 

 
A generic volume interactor has been defined that allows computing several physico-chemical interactions in 
the plasma. To use it, the Erosion&Contamination package shall be present in the lib directory of SPIS (see 
section 3.1.1).  

 

Figure 28: Package Erosion&Contamination in the lib directory 
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Then, the GenericVolInteraction shall be assigned to a VolInteractTypeX global parameter. The volInteractX 
flag shall then set to a positive value standing for the densification coefficient as for previous volume 
interactions. Do not forget to set the correct number of volume interactors with the volInteractNb parameter. 
The volume interaction modelled by the GenericVolInteraction is then defined by the volInteractXReaction. 
 

 

Figure 29: example of generic volume interaction (interaction 1). It defines a charge exchange reaction between Argon ions and 
neutrals, with the reactant neutrals defined as a population with a constant pressure. 

 
The reaction rate is defined by the crossSectionVolInteractX parameter. This parameter’s unit shall be [m(3r-

4)] where r is the number of reactants (e.g. in m2 for two reacting species). This parameter can either be a 
double (constant cross-section), a series (table of cross-sections versus the impinging particle energy in eV) 
or the name of a file containing the table of cross-sections (same format as CEXInteractor, for backward 
compatibility). 
 
The number of product particles generated is sampled such as the statistics on a target gets improved. The 
space and velocity domain is divided in 10 bins in each dimension, and the number of particles in each bins 
is computed to send more particles on the target than in other directions The target on which the statistics is 
improved is define by attributing to it a sourceId in the group editor. Then, this id is reported in the 
TargetIdVolInteractX global parameter. The increase of particles toward the target is controlled with the 
TargetDensVolInteractX global parameter (1= no particle number increase, default=3). 
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3.10.2. Reaction description 

The general manner of defining a reaction is: 
 
Name : N1{reactant1}+ N2{reactant2}+…+NN{reactantN}> M1{product1}+…+{MMproductM} 
 
Italic font stands for optional elements. 
 
The Name is a simple name for the reaction that is used in the outputs naming. Several interactions can have 
the same name as the interaction number is always added to the name. If omitted the name is “VolInteract”. 
 
Nx and Mx stand for the stoichiometric coefficients. Those must be integer or decimal numbers. If omitted 
the stoichiometric coefficient is one. 
 
reactants and products can be either : 

- Chemical formula of species. Example: Xe, Xe+,… For reactants, and except for particular cases 
detailed below, these species must correspond to existing populations in the simulation.  

- Name of existing populations. Example: ions1,… 
- Photons. In which case it should appear either as “photon” or “hv” 

For reactants: 
It is possible to use as reactant a species that was not yet defined. It can be done by defining the species 
chemical formula and either a constant pressure or a influx that is a fraction of the first population influx 
(these possibilities correspond to that offered by the CEXInteractor and where developed to ease the 
validation of the interactor). 
To define a population with a constant pressure the reactant name should be: {reactant(xxPa)} with xx the 
pressure in Pascals (example: {Ar(10Pa)}). 
To define a population with an influx being a fraction of that of the first population, the reactant name 
should be {reactant(xx%OfFirstPopulation)}, with xx the fraction of the first population in flux. Obviously, 
such a population cannot be defined as the first population itself. 
In these two special cases, the neutral temperature must be defined in eV by the parameter2VolInteractX 
parameter. 
 
For products 
If the product is a photon, an electron or a neutral defined by a chemical formula, it is ignored (meaning no 
particle created). If the product is defined by a population name (ex: ions1,…) it will not be ignored. 
If the product corresponds to fast neutral its name must be: {fastproduct} (example: fastXe for fast xenon 
neutrals). 
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3.10.3. Examples of reactions 

CEX:{Xe+}+{Xe}>{fastXe}+{Xe+}: charge exchange reaction between Xenon ions and neutral 
 

{Thruster0_Xe+}+{Xe}>{Thruster0_Xe+}+{Xe}: elastic collision between Xenon ions 
 

{Xe}+{hv}>{Xe+}+{electron}: photoionization, note that the{electron} is not mandatory. 
 

{Xe}+{electron}>{Xe+}+2{electron}: ionization by electron impact. 
 

{Xe+}+{electron}>{Xe}: recombination 
 

3.11. Magnetic fields 

Previous versions of SPIS only allowed defining a single uniform magnetic field associated with the 
environment. SPIS-DUST also allowed defining a single magnetic dipole in the simulation. SPIS-EP now 
introduces the possibility of having an unlimited number of magnetic fields. To define a magnetic field in 
the global parameters, it is needed to determine the magnetic field model by defining the “MagneticModel” 
parameter (for the first model) or the “MagneticModelX” parameter (with X the model number, starting with 
2). SPIS-EP provides three models of magnetic field: “UniformBField” (uniform field), “DipolarBField” 
(magnetic dipole) and “SolenoidBField” (solenoid magnetic field). SPIS-EP also provides a new particle 
pusher to compute the particle motion in the magnetic field (see section 4.5). 

3.11.1. Uniform Field 

To define a uniform magnetic field, one must provide the components of the magnetic field by specifying 
the global parameters “Bx”, “By” and “Bz” (or BxN, ByN, BzN if the field number is N). The magnetic field 
unit is Tesla. 

3.11.2. Dipolar Field 

To define a uniform magnetic field, one must provide the components of the magnetic moment by specifying 
the global parameters “MagMomentx”, “MagMomenty” and “MagMomentz” (or MagMomentxN, 
MagMomentyN, MagMomentzN if the field number is N). The magnetic moment unit is T.m3. Then, it is 
needed to define the dipole centre by specifying the global parameters “MagDipoleCenterx”, 
“MagDipoleCentery” and “MagDipoleCenterz” (with the model number if needed). The dipole centre 
coordinates are in meters. 
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3.11.3. Solenoid Field 

To define a uniform magnetic field, one must provide the components of the magnetic field at the center of 
the solenoid by specifying the global parameters “B0x”, “B0y” and “B0z” (or B0xN, B0yN, B0zN if the field 
number is N). The magnetic field is in Tesla. Then, it is needed to define the solenoid centre by specifying 
the global parameters “SolenoidCenterx”, “SolenoidCentery” and “SolenoidCenterz” (with the model 
number if needed). The dipole centre coordinates are in meters. Finally, the solenoid length and radius are 
given by the global parameters “SolenoidRadius” and “SolenoidLength” (with the model number if needed) 
both given in meters. 
 

3.12. Settings of the spacecraft and simulation parameters 

2.8.1 SPIS summary report 

In order to ease the control of the simulation setting and initialisation, a summary report has been added to 
SPIS, which is available both when SPIS is used with a Graphical User Interface, from command lines or in 
batch mode. 
 
Several modules may deliver information in this summary report; each of them appearing in a different tab. 
Up to now, two tabs at least will appear. The first one lists all the populations simulated with their main 
characteristics. The second one presents a histogram of the mesh quality. Depending on the quality of the 
mesh, the tab icon may represent information, a warning or a problem.  
 
Some devices, namely the thrusters and the high voltage solar arrays, also present their main characteristics. 

3.12.2. Mesh quality 

As for any SPIS simulation, it is of primary importance that the simulation volume mesh be of the best 
possible quality. By “mesh quality” one should understand that the mesh tetrahedral are as close as possible 
as regular tetrahedral (i.e. all surfaces, angles, edges,... being equals). This is particularly the case for electric 
propulsion simulation in which the mesh refinement close to the thruster exhausts must be refined to catch 
all the gradients. One should always test the mesh with the quality tools embedded with the Gmsh software 
delivered with SPIS. In order to ease this process, a quality check tool has been added to the SPIS simulation 
summary report appearing at the simulation initialization (as a popup if the User interface is used, in plain 
text otherwise). 
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Figure 30: Summary report of the mesh quality. It is recommended to reach the GOOD overall quality marker (minimum cell 
quality >0.2, mean quality >0.67). 

 

3.12.3. Current generator  

Until the electric propulsion version, spacecraft circuit in SPIS could only be composed of RLC components 
and voltage generators. SPIS circuit solver aims at nullifying the net current on an open circuit (i.e. closed by 
the plasma). This formulation of the circuit does not allow for explicit current generators. In a closed circuit 
case, current generator can be included because the current can circulate on closed loops, preserving the 
consistency of the system. To include current generators in an open circuit, it is thus needed to translate the 
net current generated in the circuit into a net current between the circuit and the plasma. 
 
This is why previous versions of SPIS allowed simulating current generators by defining sources in the 
group editor: in order to introduce a current I between to nodes, one should select the surfaces corresponding 
to each nodes and define a source delivering a current +I or –I depending on the node. Since SPIS offers to 
possibility to have sources that only delivers a current without actually generating particles, this is 
effectively equivalent to defining a current source. This option is still possible with SPIS-EP. 
 
The previous option poses two difficulties: It is not obvious to do, in particular if several groups belong to 
the same node and it is questionable if it is applied to dielectric surfaces. Thus, SPIS-EP now offers the 
possibility to define a current generator directly in the circuit editor. It follows the usual SPIS netlist syntax: 
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writing “I 0 1 2” in the circuit editor creates a current generator between the nodes 0 and 1 that delivers a 
current of 2 Amperes. This current is directly injected in the electrical nodes, rather than on the surface like 
with the previous method. This solves the problem of having to deal with multiple surfaces per nodes and 
better handles dielectric surfaces. 
 
The current generators defined one or the other ways can be defined in addition to any other electrical 
component, since they are treated as supplementary currents exchanged with the plasma rather than actual 
electrical components. The downside of it is that the current generator adds a current between the two nodes 
rather than forcing it to a given value. To simulate an ideal generator it is thus possible to define a large 
resistance between the two nodes. 

3.12.4 SPICE netlist description of the circuit 

SPIS v6.0.4 extends the way the spacecraft circuit can be described, based on the standard SPICE netlist 
syntax. Since the traditional SPIS netlist syntax is a subset of the larger SPICE syntax, the compatibility with 
older description is fully ensured.  
 
The new syntax accepts comments both as full lines, using the * symbol, and at the end of a line using either 
the ; or $ symbols.  
 
The general syntax of a SPIS netlist is: 
  T<name> N1 N2 [value|model<(param<=value>)>] <parameter<=value>...>  
 
where T is the component symbol (currently R,C,L,I,V), name an optional component name, N1 and N2 are 
the nodes connected by the component. The component is defined by either a numerical value (following 
SPICE syntax, see below) or by a model identified by its name. If a model is defined, extra parameters may 
be added, either explicitly using the “parameter=value” syntax, where parameter is the parameter name, or 
by specifying the model parameters in the model specific order. 
 
As an example, the following circuit is simulated as a functional test case each time SPIS is built: 
 

*This is a test circuit for non‐regression purposes 
I 0 1 1 
R 1 2 10 
C 1 2 10 
L 1 3 10 
R 0 2 10 
V 2 3 0; node 2 and 3 are short‐circuited 
Vsin 4 5 SIN(10 5 0.01) 

 
NOTE FOR DEVELOPPERS: Both components and models can be defined in classes that follow a specific 
API, so that the list of components and models can be easily extended in plugins. The naming of the 
components must follow the NGSPICE nomenclature [RD4], except for “P” which is reserved for 
Photovoltaic cells in SPIS (although not yet implemented). The API of the components and model can be 
obtained by looking at the org.spis.Circ.Circ.ElecComponent class source or by contacting ONERA’s SPIS 
development team. 
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Models that are currently implemented in SPIS are the standard models for potential and current sources 
[RD4]. A complete description of the parameters is given in the NGSPICE manual. Note that the default 
values for the SPIS models may slightly differ from the NGSPICE ones. 

3.12.4.1  PULSE 
 
General form: 
 PULSE(V1 V2 TD TR TF PW PER) 
 
Examples: 
 VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS) 
 
Name Parameter Unit Default value 
V1 Base value Component unit Mandatory 
V2 Pulsed value Component unit Mandatory 
TD Delay Time Seconds 0 
TR Rise Time Seconds 0 
TF Fall Time Seconds 0 
PW Pulse Width Seconds 1E20 
PER Period Seconds 1E20 
Intermediate points are determined by linear interpolation. 

3.12.4.2  SINusoidal 
 
General form (the PHASE parameter is only possible when XSPICE is enabled): 
 SIN(VO VA FREQ TD THETA PHASE) 
 
Examples: 
 C1 3 0 SIN(0 1 100MEG 1NS 1E10) 
 
Name Parameter Unit Default value 
V0 Offset value Component unit Mandatory 
VA Amplitude value Component unit Mandatory 
FREQ Frequence Hertz Mandatory 
TD Initial time shift Seconds 0 
THETA Damping factor 1/Seconds 0 
PHASE Pulse Width Degrees 0 

3.12.4.3  EXPonential 
 
General Form: 
 EXP(V1 V2 TD1 TAU1 TD2 TAU2) 
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Examples: 
 R2 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS) 
 
Name Parameter Unit Default value 
V1 Base value Component unit Mandatory 
V2 Final Value Component unit Mandatory 
TD1 Rise  delay Second 0 
TAU1 Rise time Seconds 1E-6 
TD2 Fall delay Seconds 1E20 
TAU2 Fall time Seconds 1E-6 
 

3.12.4.4  Piece-Wise Linear 
 
The definition of the piece-wise linear model differs slightly from that of NGSPICE : 
General form: 
 PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>) <STEPS=[0|1]> 
 
 
Name Parameter Unit Default value 
Tn Time of the nth value second First mandatory 
Vn nth value Component unit First mandatory 
STEPS Step flag - 0 
 
Nominal behaviour (NGSPICE) is to interpolate values between the specified times, is STEPS is set to 1, 
then no interpolation is performed and the last value is used. 
 
 

3.12.5. Poisson solver parameters 

Because of the strong and abrupt variation of the thruster ion densities in the plume, the electrons density 
and temperature are also varying abruptly over small distances, which put strong constraints on the Poisson 
solver. It may thus be needed to increase the maximum number of iterations allowed for solving the Poisson 
equation (by increasing the values of the iterGradientNI and iterNewton global parameters) and to decrease 
the value the convergence threshold (by decreasing the values of the tolGradientNI and tolNewton global 
parameters). The simulation stability is very sensitive to the quality of the Poisson solution. If the solution is 
not satisfying at some step, the simulation may diverge.  
 

3.12.6. Spacecraft capacitance 

Because of the strong currents emitted by the thrusters and cathodes, it may be needed to adjust the 
spacecraft capacitance in order to avoid brutal surface potential variation that could lead to a divergence of 
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the simulation. The spacecraft capacitance is given by the CSat global parameter. The capacitance of 
dielectric materials is given by their thickness defined in the group parameters. A good practice for all of 
SPIS simulation is to adjust the CSat to filter effect faster than those of interest (i.e. a large CSat should be 
set when only the quasi-static charge state is of interest). 
In order to obtain more stable simulations and to better fit the physics, the equivalent electrical circuit used 
to model the dielectric coatings has been modified in SPIS-EP. In previous versions, the sheath capacitance 
“CSat” was applied to the metallic conductor which underlies the dielectric coating. This made little sense 
and was modelled this way only to avoid zero capacitance electrical nodes which could have been 
numerically unstable. In the new version of SPIS, the sheath capacitance is applied to both the dielectric 
coating and the underlying metallic conductor. This is more physical and better makes the distinction 
between the overall charging due to the environment and the differential charging due to the dielectric 
capacitance. 

3.12.7. Using view factors for neutrals 

In order to accelerate computation related to neutral particles, it is possible to use view factors. These view 
factors are computed in real time, but the visibility of each pairs of nodes is computed once and for all at the 
start of the simulation. Use of view factors is impossible when using semi transparent grids and is currently 
not accurate for unmeshed wires. Moreover the initial computation of the visibility between each pairs of 
nodes may be long for some geometry. Thus, it is possible to select the use of the view factors in the global 
parameters by changing the value of the useViewFactors parameter. A value of 0 deactivate the view factors, 
1 (default) activates them and a value of 2 forces their use for the computation of the shadowing.  
View factor are not used for shadowing computation by default because the photon angular distribution 
function is a Dirac. Thus, using the visibility between the nodes to compute the transfer function between 
surfaces may be inaccurate. Still, it may be efficient for dusty plasma simulation with changing sun 
orientation, as the re-computation of the shadowing in volume is much faster using view factors. 

4.12.7 Electrical setup of the thruster assembly 

The thruster assembly is exposed to a very strong plume particle collection that is not correctly modelled, in 
particular concerning the collection of cathode electrons which is largely overestimated. Thus, this assembly 
electric node should either be set to the same electrical node than the thruster exhaust or the current 
collection and emission from it should be set to 0 and the node be connected to the exhaust node through a 
voltage bias corresponding to that expected in space. 
Nonetheless, the flux of ions on the thruster assembly cannot be accurately computed so that the sputtering 
due to erosion by ion may be overestimated. Thus, a particular care should be taken while interpreting the 
erosion and contamination data from the thruster assembly. 
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4. SPIS-EP ARCHITECTURE DESCRIPTION 

4.1. Overview of SPIS architecture 

The numerical kernel block diagram of the next figure presents the SPIS-NUM top level structures and their 
main interactions. The top level classes that encode the core functionalities and object definition of the 
simulation (initialization from UI, Simulation main loop, plasma and spacecraft definition) are gathered in 
the top (TOP) java package. The plasma object is composed of volume distributions associated to a Poisson 
solver, located in the solver (SOLVER) package. This package also provides Matter classes to move 
particles. The particle pusher of the Matter solver moves particles on the volume mesh and mark particles 
arriving on spacecraft and grid surface meshes. The volume (VOL) package is composed of classes relative 
to volume meshes, data fields living on this mesh, population distributions and interactions. The surface 
(SURF) package handles particle collection and emission, surface interactions and surface fields. The 
spacecraft is composed of a circuit solver located in the circuit (CIRC) package. The circuit solver also takes 
account of semi-transparent grid objects. Finally, the UTIL package collects a large number of methods 
(sampling, mathematics, etc…) used in all packages. Several of the SPIS-NUM elements are dynamically 
loaded from the user specification (Global parameters) in UI. 
 

 

Figure 31 - Block diagram of SPIS-NUM packages, with main interactions between them. 

 
 For a complete understanding of SPIS-NUM classes’ hierarchy and interactions, a proper 
documentation can be generated using the Javadoc command of java.  
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4.2. Packaging modification 

SPIS-EP introduces a particularly large number of new physical modules, i.e. classes describing a certain 
physics that is dynamically loaded by SPIS during its execution on the request of the User in the UI through 
Global parameters. In SPIS 5.1 physical modules cover scenarios, transition, surface and volume interactions 
and distributions. The fact that these modules are loaded dynamically leads them to be de-correlated from 
the core of SPIS-NUM and allows to have them packaged in separated packages, which then permits the 
code maintainers to better handle the code evolutions (in particular for parallel projects), the code long term 
maintenance (since the core is shared, bug fixes are more easily performed for all projects) and a simple and 
fast addition of new physics (in particular for new developers in the SPINE community that are not familiar 
with the deepest layers of the numerical core).  
 
This also permits SPIS to load only the needed packages. This is obtained through the use of OSGi bundles, 
in the same manner that each major functionality of SPIS-UI are packaged in a separate bundle (i.e. in a 
separate java file). The details of the installation, setup and use of these packages is given in the next section. 

 

Figure 32: Block diagram of SPIS-NUM, separating the numerical core and the physical modules that are dynamically loaded on 
User’s request. In SPIS 5.1, some parts of the definition of the distributions are hard-coded in the core of SPIS (Poisson 
solver,…). 
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4.3. Plugins architecture 

A plugin is a group of java classes that is independent from the core in the sense that SPIS-NUM core can 
run and perform a simple simulation without the presence of the plugin. It means that SPIS-NUM core do 
not import or make any reference to any of the plugin classes. SPIS-NUM Core knowledge of the plugins 
only occurs at runtime when the package manager Felix loads the different all the SPIS components 
[SCIENCE]. In order to be recognized as a plugin, the SPIS-NUM plugin, the plugin must follow a precise 
naming and architectural convention. In particular, all the packages and the classes in the bundles must be 
contained in a package name: spis.bundles.bundleName, where bundleName is the name of the bundle. In 
order to avoid confusions, it is required that bundles that are not part of the community distribution be 
named as spis.bundles.compagnyName-bundleName, where companyName is the name of the company (or 
the person) that developed and/or maintain the bundle. Moreover, Maven’s Symbolic name must be org-
spis-num-bundles-compagnyName-bundleName. To do so, the bundle’s pom.xml must contain: 
 
  <plugin> 

    <groupId>org.apache.felix</groupId> 

    <artifactId>maven‐bundle‐plugin</artifactId> 

    <extensions>true</extensions> 

    <configuration> 

      <instructions> 

        <Bundle‐SymbolicName>org‐num‐bundles‐compagnyName‐bundleName <Bundle‐SymbolicName> 

        <Export‐Package> 

          spis.bundles.compagnyName‐bundleName.* 

        </Export‐Package>  

      </instructions> 

    </configuration> 

  </plugin> 

 

SPIS-NUM core, as well as other plugins can be declared as dependencies if necessary. 
 
Once Felix loaded all bundles, SPIS-NUM Core search across the loaded bundles those whose name match 
the convention and store them in a list. At the same time, SPIS-NUM Core performs an invocation of the 
optional spis.bundles.compagnyName-bundleName.osgi.BundleInit.init() method. This method is executed 
before at SPIS start, before any simulation or data be loaded. It is thus exclusively used to define static data 
(exemple: it is used by the dust plugin to add the dust particles type to SPIS-NUM default particle list). 
 
The architecture and the naming conventions in the plugin must follow that of SPIS-NUM. As an exemple, a 
volume distribution must be stored in the spis.bundles.compagnyName-bundleName.Vol.VolDistrib package 
and derive from the spis.Vol.VolDistrib.VolDistribWithIO class. This allows SPIS-NUM core to retrieve the 
classes in the bundles. All classes that can be loaded from a class name defined by the user as a SPIS local or 
global parameter can be instantiated by SPIS-NUM core, given that they respect the naming convention and 
that the derive from the correct SPIS-NUM Core classes.  
 



SEPTEMBER 2018  -61- 

 

 

In addition, there are special classes and methods that can be specified at that will be called by SPIS-NUM at 
specific time if they exist (all are optional): 
 
 We already presented the osgi.BundleInit.init() method earlier in this section. This method must only 
be used to add some static properties to SPIS-NUM. 
 
 The Top.Simulation.BundleSimulationInit class is instantiated during the simulation initialisation 
process, just before the loading of the surface interactors. It derives from BundleAPI_SimulationInit and 
contains a single public method initSource(boolean fixedDt). 
 
 The Util.MonitorBundleFieldMonitor class derives from BundleAPI_FieldMonitor and is used to 
define a field monitor specific to the plugin. 
 
 The Util.Instrument.BundleInstrumentsCatalogue class is used to define the instruments that are 
implemented in the plugin and derives from BundleAPI_InstrumentsCatalogue.  
 
 The Util.Instrument.BundleDefaultInstruments class is used to define the instruments that must be set 
up by default at the start of any simulation when the plugin is loaded (even is no classes from the plugins are 
specifically declared to be used by the user). It derives from BundleAPI_DefaultInstruments. 
 

4.4. Workflow modifications 

SPIS 5.1 is based on a main (time) loop that executes sequentially three elements: The plasma evolution, the 
surface interactions and the spacecraft circuit evolution. This assumes that these three elements can evolve 
following the same clocking. This is usually true: the plasma evolution is itself composed of a sub-loop that 
allows providing a rather slowly varying plasma condition that matches the spacecraft circuit evolution 
without introducing abrupt variations that would lead to numerical instabilities (this may require the user to 
be experienced enough to parameterize correctly the different loop steps). The surface interaction itself is 
rather passive from this point of view and only serves as an interface between plasma and spacecraft 
(although secondary emission may lead to a strong coupling between plasma and surface interactions). 
 
A new problem arises with electric propulsion: the recollected current may directly change the huge current 
emitted from the cathode which itself directly impact the recollected current. This retroaction is faster and 
much larger than the plasma response and thus a sub-loop should be created between the current 
collection/emission and the spacecraft circuit evolution. This can be done using the current SPIS architecture 
by making sub-loops on the circuit solver in which the current scalers (function that predicts the current 
evolution as a function of the spacecraft potential evolution) are recomputed. 
 



SEPTEMBER 2018  -62- 

 

 

Another modification that is needed by the developments of SPIS-EP is the coupling between the volume 
interactions and the particle motion. As for SPIS 5.1, the plasma loop is composed of three elements: The 
population evolution (particle motion for PIC distributions), the volume interactions and the potential 
evolution. In order to have an accurate computation of the processes related to particle collisions (in 
particular CEX), it is necessary to compute the volume interaction in each mesh cell crossed by the particles 
(volume interaction and population evolution must be computed at the same time). This leads to a 
modification of the general SPIS workflow. 
 
Figure 33 shows a sketch of the existing (left) and SPIS-EP (right) workflows. 
 
The proposed modification stays consistent with the current simulation scheme and will not introduce 
problems of backward compatibility with the existing SPIS simulations. 

 

Figure 33: Schematic flow chart of the SPIS software. As for SPIS version 5.1, there is a main loop on three elements: Spacecraft 
circuit evolution, Surface interaction and plasma evolution. The plasma evolution is itself composed of a loop on three elements: 
population evolution, volume interactions and plasma potential evolution. The better performances required by SPIS-EP implies 
to deeper connection between the spacecraft evolution and the surface interaction on one hand and between the population 
evolution and the volume interactions on another hand. 

 
 
 



SEPTEMBER 2018  -63- 

 

 

4.4.1. Modification of the circuit solver 

The current balance is particularly difficult to compute for an electric propulsion simulation. Thus, the 
Poisson and circuit solvers were refactored. 
A wider and more accurate use of the current scalers is made in the circuit solver. The current scalers predict 
the current variation that arises from a potential variation. Because there is a closed electrical circuit between 
the cathode and the spacecraft surface (closed on one side by the spacecraft wiring and on the other by the 
plasma), there is a strong retroaction of the cathode and surface potential variations on the current circulating 
in this circuit. New current scalers were thus designed to accurately model this current circuit. This also 
includes the computation of the cathode net current as a function of the cathode potential. 

 

Figure 34: (right) circuit solver algorithm in SPIS 5.1, (left) circuit solver algorithm in SPIS-EP. A better computation of the 
current evolution vs potential improves the accuracy of the solution, while external loops in which the dI/dV and maximum 
potential variation are re-evaluated allows for larger time steps. 

The current circuit solver had always sub-iterated to solve the circuit (at least twice), until it reached a 
threshold of potential variation at which the (linear) current scaler prediction loose it accuracy. If this 
threshold is reached over duration shorter than the current time step, the time steps decreases and the 
simulation will run for a longer time. To improve this, the current scalers are recomputed each time the 
threshold is reached, thus allowing for longer time steps. The number of time the current scaler can be  
recomputed is determined automatically by SPIS based on a timing process (if the circuit solution is longer 
than the other processes there are no re-computation, if it is fast it can be recomputed up to three times). 
 
To have faster circuit solver computation, the task of computing the dI/dV matrix has been parallelized. 
Also, the estimate of the current variation between two iterations was improved. Formerly, a global (i.e. 
summed over all populations) dI/dV matrix was computed and the current variation was computed in a linear 
way as dI = (dI/dV).dV. This is acceptable as long as dI << I for all species independently. This condition 
was in fact rarely verified and led to strong divergences in the case of an electric propulsion simulation. 
Thus, the current is now updated in by each current scaler for the current they model in an analytical way 
(not necessarily linear). In particular this prohibits having |dI| > |I| in which case the current for a given 
species could change sign (which is unphysical). 
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4.4.2. Smoothing of the current taking into account the statistical noise 

SPIS v5  already provided the mean to smooth the currents on surfaces before solving the equivalent 
electrical circuit of the spacecraft. With SPIS-EP, this smoothing also uses the information of the statistical 
noise (for PIC populations) to perform the smoothing. The result of the noise-dependent method is not 
necessarily smoother that the old smoothing method, as it favours the surface elements with the lowest noise, 
which may be in minority for very noisy simulations. 

 

Figure 35: From left to right, current collected on spheres before the smoothing, with the noise dependent smoothing, with the old 
smoothing method. The noise-dependent method better preserve the current difference due to photo-emission than the old 
smoothing method 

4.4.3. Modification of the Poisson solver 

The electron source term in the Poisson equation is implicit, meaning that the electric potential and the 
electron densities are computed at the same time. In order to solve this non-linear equation, SPIS 5.1 Poisson 
solver included expressions of the density variation against potential variation for all existing distributions. 
This was not satisfactory for several reasons: (1) It put particle distribution dependent data in the Poisson 
solver, meaning that modification in the distribution must be manually reported in the Poisson solver, (2) it 
prohibits to easily add new distributions, as new switches have to be implemented in the Poisson solver to 
define these distributions. Thus, the implementation of the computation of the distribution dependent terms 
is now deported to the distribution classes. The methods to implement are now gathered in the 
ImplicitableVolDistrib interface. All distributions that can be computed implicitly must implement this 
interface. The code cleaning related to this change also allowed to suppress the limitation of the number of 
implicit distribution. Up to SPIS 5.1, only the two first electron distributions could be implicit, whereas the 
number is implicit distributions is now unlimited. 
The cathode electron population is particular in the sense that the reference densities and temperatures are 
not uniform and vary in time. Moreover, both can vary over several orders of magnitude across the 
simulation domain. In order to handle these constraints, the first guess of the Poisson solution has been 
improved by implementing in the implicit distributions the computation of the potential as a function of the 
density population and of its derivative. This allows having exact zero order approximations for each 
distribution that can be averaged and corrected using the derivative terms. Without this modification, the 
Poisson solver does not converge. 
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Because the cathode electron population reference density, temperature and potential are time dependant, the 
moments of the implicit distributions are now updated at the beginning of the Poisson solver to have a well 
time-centred equation to solve and to have consistent reference (surface) potentials between the Poisson 
boundary conditions and the cathode electron density. 

4.4.4. Modification of the population evolutions and interactions 

In order to better handle the particle evolution along their trajectory, the particle pusher and the volume 
interaction interface were reworked. 
 
A new API was defined in the VolInteractionAlongTrajectory abstract class for volume interactions 
occurring along the particle trajectory. It permits to define for each interaction the acceleration applied to the 
particles in each cells (computeAccelerationInCell method). This method is called when the particles enter a 
cell (or when its motion starts). It also permits to define the interaction that occurred while crossing the cell 
(computeInteractionInCell method). This method is called when the particles exit the cell (or when the 
motion stops). In order to accelerate the above method computations, the interaction is initialized once at the 
beginning of the particle pushing phase (initInteractionForTimeStep method). 
 
In SPIS 5.1 parallelisation of the particle motion was performed by invoking N instances of the 
ComplexPusher class. Each of these instances was responsible for moving one particle over N. This 
architecture of full duplication of the pusher was not adapted because the new interaction interface needs to 
be initialized only once at each time step. Instead, multiple instances of the ComplexPusher were replaced 
by a single instance of the new PICPusher. This pusher performs a single initialisation step common to all 
particles, and then invokes multiple instances of the TaskOfPushingParticleBatch object. Contrary to the old 
ComplexPusher, this object divides the particle list in several batches (usually much more than the number 
of threads) and starts several pushing threads. Each thread asks for and obtains a batch of particles. Once 
they finished their batch, they ask for the next one until all particles are pushed. Thus, the threads do not 
necessarily push the same number of particles, but rather share a more balanced computational load (if a 
thread computes the motion of particles that cross more tetrahedrons, it will computes less particle motions). 
This improves the efficiency of the particle pusher.  
 
Several methods exist for computing the particle motion across a tetrahedron, depending on the field 
uniformity and on the magnetic field. Each of this method is now implemented in a separate class which 
inherits from the CrossTetrahedron abstract class which defines a common API. This improves the 
readability of the code and opens the possibility for a future modularity of the particle pusher. 
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4.5. Improved particle pusher 

Many electric thruster technologies rely on particular magnetic topologies. Previous versions of SPIS 
implemented two algorithms that push the particles in presence of a magnetic field: One of them 
approximates the motion by a dichotomy algorithm, while the second one uses a Runge-Kutta algorithm. 
The latest is precise, but numerically demanding; while the first is fastest but lacks precision. A new 
algorithm that is both faster and more precise than the previous algorithms is implemented in SPIS-EP.  
 
It is a two stage algorithm: if the cell size is significantly larger than the Larmor radius, the guiding centre 
motion is computed using the same algorithm than the pusher without magnetic field (by solving in 

barycentric coordinates the 2nd order equation of motion x+v t + dv/dt t2/2 = 0). Because amplitude of the 
particle motion around the guiding centre trajectory is the Larmor radius, the guiding centre motion is 
computed up to a distance of one Larmor radius from the cell surface. 
Then, the particle motion is computed using an algorithm similar to that used to compute the guiding centre 
motion but using a fourth order equation of motion in barycentric coordinates.  
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The trajectory computed this way is accurate enough over time steps such that (ct < 0.2). If the motion 
duration obtained from the equation of motion is larger, the guiding centre (and the particle position around 

it) is pushed over this time step (up to c t = 1). If the particle ends up out of the cell, the motion is limited 
to two-third of the time step. The algorithm is then re-iterated by solving a new fourth order equation of 
motion.  

 

Figure 36: Algorithm of the magnetic field pusher. 
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4.6. Thruster axis computation 

To identify several thrusters surfaces defined in one spacecraft group, the following algorithm is used: 
 
Input: the mesh where is defined the design of the geometry. 
 
Output: the list of list of triangle mesh elements. Each list of triangle mesh elements is a continuous 
surface. 
 

 While all the face mesh elements of the thrusters have not been considered 
o Consider one random mesh element (triangle) from the thrusters mesh mask and put it in the 

list of neighbours faces to treat 
 While there are untreated neighbours faces 

o End While 

 End while 
 
For each continuous surface, thanks to the following algorithm, an axis, defined by a position and a 
direction, is computed: 
 Input: list of triangle mesh elements defining a plane continuous surface. 
 Output: the position and the direction of the thruster axis. 

 Compute the normal of the first triangle to know the direction of the thrusters axis and orient it with 
the tetrahedral connected to this mesh element 

 Compute the barycentre C of the continuous surface using the following formula to weight the 
barycentre of each cell of the surface by its area 
 

     
 
Where ai, bi and ci are the three vertices of the current triangle. 
 
These calculations have been validated using several approaches. First a unit test case has been implemented 
to verify the validity of the algorithm on a simple case. A hexagon mesh is built in the test case following the 
coordinates shown on Figure 37. Then the thruster axis for this surface is computed. We obtain the correct 
centre (3, 3, 0) and the correct direction (0, 0, 1). 
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Figure 37 Schema of the "Hand-made" mesh for the unit test case 

Several tests have been performed with different shapes and with uniform and non-uniform meshing. The 
results are shown on the Figure 38. At the left the geometry is displayed in the group editor (spacecraft body 
in green, device surface in purple) and on the right we display the computed axis by displaying it in 
Cassandra with the device surface (in red). 

      
 

       
 



SEPTEMBER 2018  -69- 

 

 

       

       
 

      

Figure 38 Examples of thruster surfaces (left) and the resulting thruster axis (in white on the right) 

 
The computed device axis is then transmitted to the numerical kernel using a Global Parameter with an array 
of FloatScalTables. Each FloatScalTable represents a device axis with the following values: 

 id: id of the device surface in the DeviceTypeId data field. 

 x: x coordinate of the start point of the device axis.  

 y: y coordinate of the start point of the device axis. 

 z: z coordinate of the start point of the device axis. 

 dx: x value of the direction of the device axis. 

 dy: y value of the direction of the device axis. 

 dz: z value of the direction of the device axis. 

  
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4.7. View factors 

In order to accelerate computation related to neutral particles, it is possible to use view factors. The view 
factors are implemented as a component of the 3D unstructured volume mesh in the 
ThreeDUnstructVolMeshWithViewFactor class which is part of the core of SPIS-NUM.  The first step in the 
view factor calculation is the computation of the visibility of each pairs of nodes in the computational 
volume. It is done once and for all the first time a distribution projection between to meshes using view 
factors is performed. The visibilities are computed by searching for each pairs of nodes if a surface sits in 
between. The visibility computation is multi-threaded and based on a tree algorithm. The result is binary and 
thus stored in a binary symmetric matrix for memory usage efficiency. This forbids taking into account 
semi-transparent. Thus, the view factor usage is deactivated if the volume mesh contains grid meshes.  
 
The view factors themselves are re-computed for each projection of a surface or volume distribution on a 
surface or volume mesh. Because the view factors are distribution dependant and because these distributions 
are neither unique nor constant, the view factors cannot be stored. Their storage would also have posed 
memory usage difficulties.  
 
In order to compute the view factors, the surface and volume distributions must implement the 
getMomentsInDirection(float[] direction, float[] surface, int index, int node, float[]  results) method that compute the 
density fraction, the flux, the three velocity components and the temperature of the distribution in the 
direction of the dir vector over the oriented surface issued from the node node of the surface or volume  
element index.  
 
These distributions must also implement the buildDistribFromMoments(ScalSurfField density, ScalSurfField flux, 

VectSurfField velocity, ScalSurfField temperature) or buildDistribFromMoments(ScalVolField density, ScalVolField flux, 

VectVolField velocity, ScalVolField temperature). These methods create the projected surface or volume 
distribution from the projected moments. 
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5. MODELS 

5.1. Cathodes 

5.1.1. Cathode electron modelling 

The cathode electron models in SPIS all derivate from a model based on the plume quasi-neutrality with 
local Poisson-Boltzmann perturbations, implemented in the GenericCathodeElectronDistribution abstract 
class.  
This model is based on the quasi neutral approximation in which the quasi-neutral electron density equals 
the ion density: 
(1)        ne,qn=ni.  

 

Since, there are no net charges, the electric potential balances the thermal pressure forces: 
(2)     q dVqn  = k/n dne,qnTe,qn 

 
Note that the electron temperature Te,qn can depend on the quasi-neutral electron density. Typically, such 
dependence is given by a polytropic index. We note hereafter f the function giving the temperature from the 
quasi-neutral electron density. 
(3)     Te,qn =f(ne,qn) 
 
Such a quasi-neutral model is already implemented in SPIS in the AISEPS package. But this model suffers 
from the fact that the potential is given by the pressure gradient rather than by the Poisson equation. This 
leads to some difficulties as there is a minimum potential allowed by the model, depending on the 
temperature law. This prohibits having consistent volume and surface potentials. Physically, this translates 
the fact that the quasi-neutral approximation prohibits the existence of non-neutral sheath near the surfaces. 
In the electric propulsion model, we compute the temperature from the ions, using a smoothing function S: 
(4)     Te,qn =S f(ni)  
 
The electron quasi-neutral density is obtained from equations (3) and (4): 
(5)     ne,qn= f-1 S f(ni) ~ ni 
 
We then allow the electron density to deviate locally from the quasi neutral approximation: 

(6)     ne = ne,qn + ne  
 
Then, solving Poisson equation one obtains: 

(7)    e(ne -ne,qn)/e0  =  V~(V-Vqn-Vcathode)/D
2 

(8)           ne/ne,qn      = 1+ (ne/ne,qn )e (V-Vqn-Vcathode)/kTe,qn  
(9)                    ne  =  ne,qn exp(e(V-Vqn-Vcathode)/kTe,qn) 
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In this model, ne,qn, Vqn and Te,qn are function of the ion density exclusively, and not on the electron density. 
Their exact expression depends on the selected model. Some of these models are implemented in SPIS and 
are describe in the next sections. Vcathode is the potential of the electrical node to which the cathode is 
connected. This later potential is computed dynamically by the circuit solver. 
 
The mathematical form of the above equation is exactly the same as that of the usual Poisson-Boltzmann 
distribution, except that the reference density temperature and potential of the distribution are local and not 
global and that they may vary in time. Except for the additional constraints it imposes to the Poisson solver 
in term of preconditioning to converge (see section 4.4.1), this equation can be solve using the exact same 
solver than the usual Poisson equation. 
 
Contrary to the pure quasi-neutral case, it is possible to simulate non-neutral sheaths close to polarized 
surfaces with this model. Another interest of this model is that the electron density equals the ions density 
tends naturally towards 0, without requiring infinite potentials. Thus, it becomes possible to couple the 
cathode electrons with the environment. 
 
The cathode current is computed from two sources: 

(1) The current of cathode electrons collected by the spacecraft. 
(2) The current of electrons needed to neutralize the plume 

The latest is computed as the larger of two currents: the current corresponding to the net thruster ion charge 
creation in the volume and the net electron current at infinity. The first one dominates at the start of the 
thruster, before the plume reaches the simulation boundaries, while the second dominates during the rest of 
the simulation. The current at infinity is computed from the current on the boundary corrected from the 
cooling and the boundary potential effects: 
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5.1.2. Cathode electron models 

5.1.2.1. Adiabatic model 
 
The adiabatic model is – after the isothermal model – the simplest polytropic model that is used to close the 
fluid equation. However, the usual model predicts (1) a constant polytropic index that does not correspond to 
the measured polytropic index variation in the plume and (2) a zero temperature for zero density, i.e. a zero 
temperature at infinity. However, this adiabatic model is computed for plasma at rest. For expending plasma, 
the model must be computed using a pressure term taking into account the plasma (ions) rest frame velocity: 
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In this case, the adiabatic relation between the density and temperature is: 
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This allows determining an equivalent, temperature dependent polytropic index: 

௘௤ߛ           (14) ൌ 1 ൅ ଶ
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Contrary to the usual adiabatic model, this model predicts a finite temperature at infinity, allowing 
computing the current balance using Eq. 10. 
 
To select this model, the thruster property “e-Model” must be set to “CathodeAdiabaticElectrons”. 
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5.1.2.2. Polytropic model 
 
The polytropic law is the simplest law that the user is able to define for the electron distribution from a 
cathode. The equation solved is the same as in the previous case but the user is able to define a polytropic 
coefficient ߛ௘௤that is different from the adiabatic one.The user can define: 

 
 1) a unique parameter whatever the plasma density 
This coefficient is defined in the global parameters using the global parameter variableTeGamma that 
defines the gamma value. 
 
 2) a step wise definition of gamma as a function of plasma density. In this case the user may define the 
global parameter variableTeGamma as a table. The user has to enter a two column table with: 

 in the first column the value of gamma 

 in the second column the minimum value of density for which we have this value of gamma (with 
decreasing densities) 
  

To select this model, the thruster property “e-Model” must be set to “CathodePolytropicElectrons”. 

6.1.2.3 University Carlos III Madrid model (default) 
 
The UC3MCathodeElectronModel cathode model derives from the polytropic model. A single value of 
gamma is used but its value is computed from the TN2 of the MODEX project: 
 

 

Figure 39: Tables summarizing the polytropic factor and the electrostatic potential difference between the environment and the 
cathode for the University Carlos III Madrid model. 
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The gamma value is automatically computed for each thruster as a function of the Mach number of the ions 
coming from the thruster and the ion mass emitted by each thruster. The previous tables are imbedded in the 
model implementation and cannot be modified. 
 
To select this model, the thruster property “e-Model” must be set to “UC3MCathodeElectronModel”. 
 

6.1.2.4 SPT100 model 
 
The SPT100 cathode model derives from the polytropic model but using the possibility to define a tabulated 
function of gamma as a function of the plasma density. This table has been defined for a standard SPT100 
thruster during the MODEX project and the function implemented fit the following plot: 

 

Figure 40: relation between the electron temperature and density in the SPT100 model. 

 
To select this model, the thruster property “e-Model” must be set to “SPT100CathodeElectronModel”. 
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5.2. High voltage elements 

5.2.1. Model 

A more detailed version of the model can be found in [HV], which also gives results of validation cases. The 
current collected by a charged surface is usually determined using an Orbital Motion Limited (OML) law. 
This kind of law allows computing an effective collection surface that corresponds to the limit after which 
all particle trajectories must necessarily cross the charged surface. The following sketch shows the trajectory 
for a particle with a trajectory tangent to the effective collection surface, which happens to be tangent to the 
charge surface too. This approximation is simple to compute for cylinder or spheres in free space, because of 
the symmetries: particles can arrive from all directions and the problem has a central symmetry in 2D 
(cylinder) or 3D (sphere). 

 

Figure 41: OML limit impact parameter in a cylindrical geometry. 

But for an interconnect on a solar panel, only some directions of arrival are possible. We build a model 
based on OML, but instead of collecting particles arriving from all directions, we define an acceptance 
angle. This angle depends on the impact factor: for interconnect at the surface of the panel the acceptance 
angle is larger for smaller impact factors (it can be different for an interconnect buried in the gap between 
the cells. 

 

Figure 42: Sketch of the impact parameters associated with an interconnect geometry. Three impact parameter must be defined 
for each half of the interconnect. 
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The acceptance angle can be expressed as the following expression: ∆݅ ൌ ∆݅ଵ ൅ ∆݅ଶ ൅ ∆݅ଷ െ  ߨ

 
hn / h0 functions are sigmoid functions of the logarithm of ݍ߶ ݉⁄ ߶ݍ ଶ with a vertex aroundݒ ൌ  .ଶݒ݉

 

Figure 43: Sketch of the parameters defining the interconnect and cell gap geometry 

 
Because of dissymmetry, both halves of the interconnect are treated separately. 
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When the cover glass surface charges in a way that repels the species attracted by the interconnects, a 
Poisson-Boltzmann factor must be applied to the collected current. 
 



SEPTEMBER 2018  -78- 

 

 

6. OUTPUTS 

6.1. Numerical parameters 

It is possible to check the quality of the simulation by adding the “Numerics monitor” instrument to the 
simulation. This instrument displays in live the largest ratio between the Debye length and the cell size. If 
this ratio is too large and the electrons are computed as PIC particles, the simulation may diverge. 
 
It also provides 2D map of the ratio between the Debye length and the cell size, as well as the map of the 
noise on the net current on the surfaces. These maps are created with a frequency N time smaller than the 
live monitoring, with N being the “2D measure periodicity” instrument parameter. 
 
Finally the instrument is also providing 3D maps of the ratio between the Debye length and the cell size. 
These maps are created with a frequency N time smaller than the live monitoring, with N being the “3D 
measure periodicity” instrument parameter. 

7.2 Default instruments 

The list of default instrument was deemed to be too long for usual simulations. A shortened list has been selected for SPIS v6.0.4. 
A new instrument was defined which monitors the currents of each population and interactor over the whole spacecraft, replacing 
the individual current monitoring per node. The old list of default instruments can be selected by setting the “detailedIVOuput” 
Global Parameters to 1. 
 

 

Figure 44: View of the standard default instrument list, with the list of monitors present by default. New monitors can be added as 
instruments under the “Monitors” category.  
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7.3 Simulation control 

The parameters controlling the simulation convergence (CSat, validityRenormalization, smootingI and smoothingPot) can be 
modified by editing the “Simulation Control – time step” instrument, which replaces the “Time Step” monitor.   
  

7.4 Monitors 

In order to simplify the monitor settings and to provide a better control on the output, most of the quantity monitors now appear as 
instruments in the UI. The monitors appear in the “Simulation control” category. Although no live monitoring is associated to 
them, they can be edited to change to monitoring settings.  
 
 

 

Figure 45: Instrument parameters controlling a typical monitor. It is possible to tune the cumulation and, sampling period for 
each monitor individually. 

 
The monitors appearing by default are the same than is previous versions. The list of default monitor is controlled by the following 
Global Parameters: 
 

- detailedIVOutput. If set to 1, the following instruments are set by defaults: “Spacecraft average 
differential potential”, “Average surface potential on nodes: time variation”, “Average surface 
potential on nodes: difference wrt to local ground” and “Individual current on nodes”. (default 0)  

         
 

- momentMonitoringFlag. If set to 1, the following monitors are set by default: “Temperature 
monitor”, “Velocity monitor”, “Kinetic energy monitor” 

 
 
Moreover additional monitors can be added in the course of the simulation the same way than instruments. The available monitors 
appear in the “Monitor” category. 
 
It is possible to use the instrument “Perform measurement” feature to monitor quantities at any time. 
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6.5. Automated sampling along the thruster axis 

It is possible to display results along the thruster axis. After selecting a data in the data mining tool, click on 
“Show advanced operations” and click on the “Visualize selected data along device axis” button as shown 
on Figure 46. 

 

Figure 46 Advanced operations panel in Data Mining view 

This tool uses the computed thruster axis as described in section 3.5.3. This axis is made of point (barycenter 
of the thruster surface) and a direction. In order to sample the selected data, an end point is needed. Thus the 
intersection of the direction and the limit of the computational volume give the final point for the probing 
line. Thus, the computed graph represents the data along the device axis from the thruster surface to the limit 
of the computational volume. 
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Figure 47: Example of automated monitoring along the thruster axis 

 

6.6. Thruster diagnosis on a shell 

It is possible to visualize the ion current through a shell located at a given distance from the thruster. 
To do so, create a Thruster shell instrument in the instrument panel. It is then possible to define as interactor 
parameters the radius and the angular size of the shell, as well as the angular step. 
 

 

Figure 48: Angular distribution of ion current at 30 cm of the exhaust of an annular thruster (before the convergence of the 
plume). 

6.7. Improved trajectory monitor 

SPIS v5 offered the possibility of following the trajectories of a given number of PIC particles from a given 
distribution [SUM]. However, the selection of the particle is arbitrary (actually the user has to provide a 
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“period” and SPIS tracks one particle over this “period”) and cannot be controlled by the user. Finally, SPIS 
v5 trajectory monitor only allows the tracking of PIC distributions. 
 
In SPIS-EP, the tracking is extended to fluid distribution. In this case, the tracking occurs through test 
particles whose trajectory is computed using the electromagnetic field at the time of the monitoring (static 
field, contrary to the case of the PIC particles). Moreover, the trajectories of fluid distribution particles may 
be chosen by specifying a target surface: only trajectories hitting a surface whose “sourceID” (defined in the 
group editor) matches the “particleTrajectoriesTargetID” global parameter value are saved. 
 

 

Figure 49: cathode electron trajectories superimposed to the cathode electron density (log scale) 

 
 
This tracking also applies to cathode electrons. The tracking starts from the cathode position which is 
defined either by: 

- The used defined position (see section 3.6) 
- from the centre of the associated thruster if the cathode is associated to a thruster 
- from the barycentre of the electrical node of the cathode is the cathode is stand-alone. 
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The cathode electrons are emitted as a Lambertian distribution (Maxwellian distribution emitted through a 
surface) following the cathode orientation define either by: 

- The used defined orientation (see section 3.6) 
- from the orientation of the associated thruster if the cathode is associated to a thruster 
- from the average normal to the surfaces of the electrical node of the cathode is the cathode is 

stand-alone. 
 
In order to start the cathode electron monitoring, one should proceed as for any other distribution [SUM]: 
In the global parameter list, the flag “nameOfThePopulationTrajFlag” must be set to 1. In the cathode case, 
“nameOfThePopulation” is either “ThrusterXElectrons” if the cathode is associated to the thruster X, or 
“cathodeElectrons” if the cathode is stand alone. 
 

6.8. Improved Langmuir probe display 

When creating a Langmuir probe, data now appear in the live monitoring. If the instrumentOutputLevel 
parameter is set to 0, the IV curves are displayed, if it is set to 1, the particle distribution function are 
displayed (see the description of this parameter in SPIS-Science documentation). 
 

 

Figure 50: Live monitoring of Langmuir probes: mode 0 (left) showing the IV curve and mode 1 (right) showing the energy 
distribution. 
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7 COMPLIANCE MATRICES 

7.1 User Requirements 

7.1.1.1 Definition level 

UR # Title 
Corresponding 

sections 
UR-DL-01 Multi-Thruster definition 3.5 

UR-DL-02 Thruster geometry and global characteristics definition 3.5 

UR-DL-03 Distributions of the ions and neutral populations from the thruster 3.53.5.6.5 

UR-DL-04 Distribution of droplets from the thruster 3.5.6.5 

UR-DL-05 Population definition from measurements away from the thruster 3.5.8 

UR-DL-06 Thruster characteristics definition from UI 3.4.4 

UR-DL-07 Improved distribution function definition in the UI 3.5.6 

UR-DL-08 Thruster magnetic fields 3.5.7 

UR-DL-09 External magnetic fields 3.11 

UR-DL-10 Switch of the active device from UI 3.5.9, 3.6.3 

UR-DL-11 Control of the active device from UI 3.5.9, 3.6.3 

UR-DL-12 Verification of the thruster parameters 3.5.1 

UR-DL-13 Ground based environment 3.3 

7.1.1.2 Simulation level 

UR # Title 
Corresponding 

sections 
UR-SL-01 Distribution of the electrons emitted by the cathode 3.6 
UR-SL-02 Coupling with the environment 5.1 
UR-SL-03 Electron thermalisation in electric thruster plume 5.1 
UR-SL-04 Current emission from the cathode 5.1 
UR-SL-05 Multi-cathode modelling 3.6.5 
UR-SL-06 Plasma interaction on the power distribution unit 5.1 
UR-SL-07 Current collection by unmeshed conductors 3.7, 5.2 
UR-SL-08 Ion-neutral charge exchange in the plume 3.10 
UR-SL-09 Ion-neutral elastic collisions in the plume 3.10 
UR-SL-10 Electron impact ionization in the plume 3.10 
UR-SL-11 Recombination in the plume 3.10 
UR-SL-12 Fast neutral modelling 3.10 
UR-SL-13 Erosion by electric thruster plumes 3.8 
UR-SL-14 Yamamura erosion model 3.8.2 

UR-SL-15 
Sputtering by electric thruster plumes and associated 
back-flow 

3.8.3, 3.8.4, 3.8.5 

UR-SL-16 Neutral reflection and adsorption by surfaces 3.9 
UR-SL-17 Neutral evaporation from surfaces 3.9 
UR-SL-18 Erosion of contaminant from surfaces 3.9 
UR-SL-19 Optimized time integration for contamination 3.9 
UR-SL-20 Particle motion in the thruster magnetic field 3.11, 4.5 
UR-SL-21 Switch-on/Switch-off of the plasma plume injection 3.5.9, 3.6.3 
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7.1.1.3 Output level 

UR # Title 
Corresponding 

sections 
UR-OL-01 Accuracy verification functionality 6.1 
UR-OL-02 Probing lines in the thruster(s) axis 6.2 
UR-OL-03 Plasma monitor on a shell 6.6 
UR-OL-04 Smart particle trajectory monitor 6.7 

 
 

7.2 Software Requirements 

7.2.1.1 Definition Level 

SR # Title 
Corresponding  

sections  

SR-DL-01   Thruster source definition 3.5 

SR-DL-02 Cathode definition 3.6 
SR-DL-03 Thruster parameter control 3.5.9 
SR-DL-04 Environment Definition 3.3 

7.2.1.2 Simulation Level 

SR # Title 
Corresponding  

sections 
SR-SL-01 Thruster Source 3.5 
SR-SL-02 Cathode electron distribution 5.1 
SR-SL-03 Cathode modelling 5.1 
SR-SL-04 Spacecraft circuit 3.6, 4.4.1, 4.4.2 
SR-SL-05 Current collection by unmeshed elements 3.7.3, 5.2 
SR-SL-06 Volume interaction along particle trajectory 3.10 
SR-SL-07 Physico-chemical processes in the plume 3.10 
SR-SL-08 Fast neutral modelling 3.10, 4.7 
SR-SL-09 Thruster magnetic field 3.5.7, 3.11, 4.5 
SR-SL-10 Erosion modelling 3.8 
SR-SL-11 Sputtering from erosion 3.8.3, 3.8.4, 3.8.5 
SR-SL-12 Contamination 3.9 
SR-SL-13 Optimized contamination integration 3.9 
SR-SL-14 Simulation progress and interactivity 3.5.9, 3.6.3 
SR-SL-15 Noise Computation 4.4.2, 6.1 

7.2.1.3 Output Level 

SR # Title 
Corresponding  

sections 
SR-OL-01 Accuracy verification functionality 6.1 
SR-OL-02 Probing lines in the thruster(s) axis 6.2 
SR-OL-03 Plasma monitor on a shell 6.6 
SR-OL-04 Smart particle trajectory monitor 6.7 
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7.2.1.4 Package level 

SR # Title 
Corresponding  

sections 
SR-PL-01 User Interface modules for SPIS-EP 3.3, 3.5.3 
SR-PL-02 Numerical kernel modules for SPIS-EP 3.1, 4.4 
SR-PL-03 Targeted platforms 1 
SP-PL-04 Testing [FTR] 
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