
T E C H N I C A L R E P O R T

Computational tools for
spacecraft electrostatic
cleanliness and payload

accomodation analysis - SPIS
Science - Architectural Design
Document (ADD) and Sofware

Design Document (SDD)

Authors : J.-C. Mateo Velez ; P. Sarrailh ;
J. Forest (Artenum) ; B. Thiébault (Artenum) ;

B. Ruard (Artenum)

SPACE ENVIRONMENT DEPARTMENT

RT 6/17826 DESP - July 2013

UNCLASSIFIED
(SANS MENTION DE PROTECTION)

-1-

BP 4025 - 2, avenue Edouard Belin
31055 Toulouse Cedex - FRANCE

Tél. : 05 62 25 25 25 - Fax : 05 62 25 25 50

SPACE ENVIRONMENT DEPARTMENT

Technical Report N° RT 6/17826 DESP

July 2013

Computational tools for spacecraft electrostatic cleanliness and payload
accomodation analysis - SPIS Science - Architectural Design Document

(ADD) and Sofware Design Document (SDD)

Written by :
J.-C. Mateo Velez ; P. Sarrailh ; J. Forest (Artenum) ; B. Thiébault (Artenum) ;
B. Ruard (Artenum)

Approved by :
Director

Space Environment Department
J.F. Roussel

UNCLASSIFIED
(SANS MENTION DE PROTECTION)

-2-

-3-UNCLASSIFIED
(SANS MENTION DE

PROTECTION)

IDENTIFICATION CARD of ONERA REPORT N° RT 6/17826 DESP

Issued by :

SPACE ENVIRONMENT DEPARTMENT

Contracting Agency :

ESA

Contract Number :

4000102091/NL/AS

Programme card number:

201.T

Date :

July 2013

Title : Computational tools for spacecraft electrostatic cleanliness and payload accomodation analysis - SPIS Science -
Architectural Design Document (ADD) and Sofware Design Document (SDD)

Author(s) : J.-C. Mateo Velez ; P. Sarrailh ; J. Forest ; B. Thiébault ; B. Ruard

SECURITY CLASSIFICATION : Civil

Title : UNCLASSIFIED (SANS MENTION DE PROTECTION)

ID Card : UNCLASSIFIED (SANS MENTION DE PROTECTION)

Report : UNCLASSIFIED (SANS MENTION DE PROTECTION)

Timing Classification Off

Title : Without object

ID Card : Without object

Report : Without object

Abstract :
This document describes the architecture of the new components developed within "Computational tools for spacecraft
electrostatic cleanliness and payload accommodation analysis”, here called “SPIS-SCIENCE”. It is aimed at extending
the capabilities of SPIS modeling framework for accurate evaluation of low-level surface electrostatic charging of
science missions with low-energy plasma instruments.

As defined in the SRD [AD4], a large number of improvements will be performed in the frame of this activity, from
very localized modifications/adding to the code; to very large changes of the global architecture (as e.g. instruments).
These upgrades necessitate a clear definition of the interfaces between the user, the graphical user interface and the
numerical kernel. This document defines the global architecture and detailed design of the new components of the
SPIS-SCI software tool.

Section 2 is the global architecture design of the software.
Section 3 is the detailed design description, including the correspondence with software requirements.
Key words :

BP 4025 - 2, avenue Edouard Belin
31055 Toulouse Cedex - FRANCE

Tél. : 05 62 25 25 25 - Fax : 05 62 25 25 50

-4- UNCLASSIFIED
(SANS MENTION DE

PROTECTION)

DISTRIBUTION LIST of ONERA REPORT N°RT 6/17826 DESP

Distribution of report

• Outside ONERA :

ESA A. Hilgers .. 1 ex.

• Inside ONERA :

DCT/CID Documentation ... 1 ex.

Distribution of identification card

• Outside ONERA :

• Inside ONERA :

Systematic distribution : DSG, DTG, DAI, DCV/ND .. 4 ex.

BP 4025 - 2, avenue Edouard Belin
31055 Toulouse Cedex - FRANCE

Tél. : 05 62 25 25 25 - Fax : 05 62 25 25 50

TR 6/17826 DESP -5-

JUNE 2013
UNCLASSIFIED

Computational tools for spacecraft electrostatic
cleanliness and payload accommodation analysis

-
SPIS-SCIENCE

Architectural Design Document (ADD)
and

Software Design Document (SDD)

June 2013

ESTEC Contract No. 4000102091/10/NL/AS

ONERA

prepared in partnership with

ARTENUM

TR 6/17826 DESP -6-

JUNE 2013
UNCLASSIFIED

Architectural Design Document (ADD)
and
Software Design Document (SDD)

June 2013

Contributors

Pierre Sarrailh ONERA/DESP
Jean-Charles Matéo-Vélez 2 Av. Edouard Belin
 31055 Toulouse cedex
 France

Julien Forest ARTENUM
Benoit Thiébault 24 rue Louis Blanc
Benjamin Ruard 75010 Paris
 France

Document Status Sheet

Document Title:

Issue Date Author(s) of document/change Reason of change
1.0 22/02/2013 PS, JCMV Creation
1.1 08/03/2013 JCMV PM4 meeting review
1.2 04/03/2013 JCMV, JF PM4 meeting review
1.3 26/04/2013 JCMV, JF, PS PM5 meeting review
1.4 22/05/2013 JCMV before PM6 review
1.5 19/06/2013 JCMV Version submitted to ESA

approval
1.6 30/06/2013 JCMV Final

TR 6/17826 DESP -7-

JUNE 2013
UNCLASSIFIED

TABLE OF CONTENTS

1. INTRODUCTION ...10
1.1. Objectives ...10
1.2. Acronyms..10
1.3. Applicable Documents..11
1.4. Reference Documents ...12

2. ARCHITECTURE DESIGN..13
2.1. Background...13
2.2. Main new components of SPIS-SCIENCE...20
2.3. Architecture of SPIS components...22

2.3.1. Overview ..22
2.3.2. SPIS-NUM..22
2.3.3. SPIS-UI...32
2.3.4. Instruments ...35

2.4. External components...35

3. DETAILED DESIGN..36
3.1. Matrix between SR and Developments ..36
3.2. Instruments..37

3.2.1. Objectives ...37
3.2.2. Global design ..39

3.2.2.1. Implementation of the Instrument Interface..39
3.2.2.2. Integrated Data structure and interface ...40
3.2.2.3. Collaborative process UI/Instruments/NUM ..40
3.2.2.4. Implementation classes ...41

3.2.3. Particle detectors...42
3.2.3.1. Input parameters..44
3.2.3.2. Detector orientation ..45
3.2.3.3. Measurement method..47
3.2.3.4. Outputs..49
3.2.3.5. User interactive mode ...51

3.2.4. Langmuir Probes...52
3.2.4.1. Input parameters..52
3.2.4.2. Measurements ...53
3.2.4.3. User interactive mode ...53

3.2.5. Virtual Particle Detectors ...54
3.2.5.1. Input parameters..55
3.2.5.2. Measurements method ..55
3.2.5.3. User interactive mode ...56

3.2.6. Plasma Sensors ...56

TR 6/17826 DESP -8-

JUNE 2013
UNCLASSIFIED

3.3. Semi-transparent grids ..60
3.3.1. CAD modeling..60
3.3.2. Inputs ..62
3.3.3. Particle pusher ..62
3.3.4. Results monitoring..63
3.3.5. Graphical User Interface...63

3.4. Generic distribution functions ..63
3.4.1. Generic user defined distribution function ...65
3.4.2. Isotropic user defined distribution function..68
3.4.3. Bi-Maxwellian distribution function ..69
3.4.4. Kappa distribution function ..69
3.4.5. Application of a drift velocity...69

3.5. Surface interactions update...70
3.5.1. Extended material properties ..70
3.5.2. Generic secondary populations...73

3.5.2.1. User defined yields ...73
3.5.2.2. User defined distribution function ..75

3.5.3. Self-shading ..75
3.5.4. Solar array interactor ..76

3.5.4.1. How to define an interconnect in SPIS ? ..77
3.5.4.2. Solar array potential map ..77
3.5.4.3. Solar array collection law ...78

3.6. Thin wires ...79
3.6.1. Particle pusher ..79
3.6.2. Surface distribution...79
3.6.3. Surface interaction..80
3.6.4. Spacecraft circuit ..81
3.6.5. Monitoring ..82

3.7. Pre-defined transitions ..82
3.7.1. Objectives ...82
3.7.2. General design ..83
3.7.3. Implementation of the Transition class...83
3.7.4. Applications..88

3.8. Magnetic field ...89
3.8.1. Iterative pusher ...89
3.8.2. Electric field induced by spacecraft motion in electric field ..93

3.9. Performance and accuracy ..98
3.9.1. Varying number of super particles ...98
3.9.2. External boundary conditions upgrade ...99

3.9.2.1. Matter boundary conditions ..99
3.9.2.2. Electric field boundary condition..100
3.9.2.3. Illustrative example...101

3.9.3. Multithreading ..103
3.9.4. Circuit solver update...105

TR 6/17826 DESP -9-

JUNE 2013
UNCLASSIFIED

3.9.5. Numerical monitors capabilities ...107
3.10. Other developments ..109

3.10.1. Spacecraft area..109
3.10.2. Pause simulation ...109
3.10.3. Control of simulationDt..109
3.10.4. Charge deposit in volume ...109
3.10.5. Backtracking volume distribution...109

TR 6/17826 DESP -10-

JUNE 2013
UNCLASSIFIED

1. INTRODUCTION

1.1. Objectives

This document describes the architecture of the new components developed within "Computational
tools for spacecraft electrostatic cleanliness and payload accommodation analysis”, here called “SPIS-
SCIENCE”. It is aimed at extending the capabilities of SPIS modeling framework for accurate evaluation of
low-level surface electrostatic charging of science missions with low-energy plasma instruments.

As defined in the SRD [AD4], a large number of improvements will be performed in the frame of this

activity, from very localized modifications/adding to the code; to very large changes of the global
architecture (as e.g. instruments). These upgrades necessitate a clear definition of the interfaces between the
user, the graphical user interface and the numerical kernel. This document defines the global architecture and
detailed design of the new components of the SPIS-SCI software tool.

Section 2 is the global architecture design of the software.
Section 3 is the detailed design description, including the correspondence with software

requirements.

1.2. Acronyms

ADD Architecture Design Document
API Application Programming Interface
BSD Berkeley software distribution license
BT BackTracking
CAD Computer-aided design
CPU Central processing unit
DF Distribution Function
ESC Environment and Space charge effect
ESN Electrical Super Node
FGS Field generated by spacecraft
FT ForWardTracking
GEO Geosynchronous orbit
GP Global parameter
GPL GNU general public license
GUI Graphical User Interface
ICD Interface Control Document
IME Integrated Modelling Environment
ITO Indium tin oxyde
IV Current voltage sweep
LGPL GNU Lesser General Public License
LP Langmui Probe

TR 6/17826 DESP -11-

JUNE 2013
UNCLASSIFIED

MCC Monte Carlo Collision
MEO Middle Earth Orbit
NUM Numerical core of SPIS
OML Orbital Motion Limited
ONERA Office National d'Etudes et de Recherches Aérospatiales
OSGI Open Services Gateway initiative
PD Particle detectors
PE Performance and Efficiency
PIC Particle in cell
PS Particles from Spacecraft
RKCK Runge-Kutta Cash-Karpe
SEEE Secondary electron emission by electron impact
SP Software processing
SPS Spherical Plasma Sensor
S/C Space craft
SPIS Spacecraft Plasma Interaction Software
SPIS-CORE Current SPIS development branch available on spis.org website
SPIS-GEO Simplified MEO/GEO tools for spacecraft charging, ESA Co4000101174
SPIS-SCI SPIS-SCIENCE: Computational tools for spacecraft electrostatic

cleanliness and payload accomodation analysis
SRD Software Requirements Document
STEP Standard for the Exchange of Product model data (ISO 10303)
STG Semi-Transparent Grid
SVN SubVersion control
TP Test Particle
UI User Interface of SPIS
UML Unified Modeling Language
UR User Requirement
PS Plasma Sensor
SRD Software Requirements Document
SWA Solar Wind Analyser
VPD Virtual Particle Detector
VPS (Virtual) plasma sensor
VSM Virtual surface mesh
wrt with respect to

1.3. Applicable Documents

[ITT] Invitation to tender – AO/1-6368/10/NL/AF - Computational tools for spacecraft electrostatic
cleanliness and payload accommodation analysis

[PROP] Proposal for a Computational tools for spacecraft electrostatic cleanliness and payload
accommodation analysis, in response to AO/1-6368/10/NL/AF, ONERA, ARTENUM, IRF, IRAP.

TR 6/17826 DESP -12-

JUNE 2013
UNCLASSIFIED

[AD1] This issue, User Requirements Document, version 2.1, ESA-SPIS-SCI-URD-2011-03-01-2.1.

[AD2] SPIS-GEO User Requirements Document version 1.3, ESA-SPISGEO-D1-URD-2010-09-002, ESA
contract 4000101174.

[AD3] SPIS-GEO Software Requirements Documents version 1.1, ESA-SPISGEO-D3-SRD-2010-11-001,
ESA contract 4000101174.

[AD4] This issue, Software Requirements Documents, version 2.1.

[AD5] This issue, Architecture Design Document, version 1.2, June 2011.

1.4. Reference Documents

[SPINE WS] 17th SPINE meeting (documents, presentations) :

 http://dev.spis.org/projects/spine/home/meeting/mxvii

[RD1] ESA PSS-05-0 Issue 2 (February 1991) ESA Software Engineering Standards.

[RD2] jHepWork’s Web page, http://jwork.org/jhepwork/index.php

[RD3] VisAD’Web page, http://www.ssec.wisc.edu/~billh/visad.html

[RD4] Xstream’s Web page, http://xstream.codehaus.org/

[RD5] JFreeChart’s Web page, http://www.jfree.org/jfreechart/

[RD6] Spacecraft plasma interaction analysis and simulation toolkit, Final Report, ESTEC Co
16806/02/NL/JA

[RD7] Time Dependent simulator of charge and discharge on spacecraft.

TR 6/17826 DESP -13-

JUNE 2013
UNCLASSIFIED

2. ARCHITECTURE DESIGN

This section describes the global architecture of the SPIS software at the end of this activity. In 2.1, we
present the initial model and architecture. Paragraph 2.2 is the overview of the main new functionalities
developed. In 2.3, the architecture of new or modified modules. Their interfaces with external tools are
described in 2.4.

2.1. Background

The main purpose of SPIS 4.3 and previous versions was to model interactions between a spacecraft and its
surrounding environment in term of surface charging. As a large set of situations can possibly be met in
flight, the structure of the code was developed in a highly modular and flexible fashion [FR-SPIS12-10-
2007]. This approach facilitated the communication and usage of the code. That choice conducted to the
choice of an open source and object oriented language (JAVA/jython).

SPIS can be considered as a modular simulation structure for which modules can be added. The code can be
split in two parts, called SPIS-Num for the numerical core and SPIS-UI for the user interface. The main
physical processes modeled in the SPIS version used at the beginning of this activity are summarized in next
figures. On the solvers side (SPIS-Num) we dispose at the start of this activity of a modular flexible structure
[RD6-RD7]. All types of objects under use follow a generic model (typically an abstract class), which allows
defining new versions that can be integrated without further work. This can be done for particle populations
(including solvers), particle sources, field solvers, environment, etc. Java introspection capabilities even
allow integrating a new version of some types without changing the existing code, only by switching to the
new version by typing the new version name in the GUI (like a plug-in). The implemented list of solvers,
which can easily be extended, is the following.

Concerning matter, the main models are a Particle-In-Cell (PIC) solver for a Monte Carlo solving of Vlasov
equation, and a Boltzmann distribution to describe the thermal equilibrium distribution of electrons. Particle
source distributions include a whole library. Gas phase collisions can be modelled through a MCC method,
with only charge exchange reactions implemented as of today. Available surface interaction models cover
most interactions relevant to space environment: secondary electron emissions (under electron or proton),
photo emission, radiation-induced-conductivity, erosion. A complex 3D multizone model was defined to
handle simultaneously in a single simulation a dense quasi neutral region and a space charge region,
typically influenced by an unscreened positive potential nearby.

TR 6/17826 DESP -14-

JUNE 2013
UNCLASSIFIED

Matter dynamics :
• PIC, physical masses, phys. and num times
• Boltzmann distribution
• Multizone Boltzmann/PIC
• External BC (open or reflection)

Plasma
injection at
boundaries

Volume
reactions
(charge

exchange)

Matter sources :
• bi-Maxwellian for ions (possibly drifting)
• bi-Maxwellian for electrons

Important aspects of matter model
• injection : effect of the local potential
• dynamics : effect of the electric and magnetic field
• charge deposit in volume
• current collection on spacecraft
• current flow at external boundaries

Figure 1 - Matter model in SPIS 4.3 version

 Concerning fields, the Poisson equation finite element solver follows a pre-conditioned conjugate
gradient method. The boundary conditions can either be Dirichlet, Neumann or a mix of them (known as
Robin or Fourier), which allows a better modelling of pre-sheath conditions (1/rn behaviour). Non linear
Poisson equation (i.e. Poisson including Boltzmann distributions for the electrons) can also be solved with
an implicit method, offering stability even for a Debye length smaller than cells. Specific features were
added to handle singular geometries, either very thin wires (of which radius cannot be meshed without
generating degenerated elements) or very thin plates (of which edges cannot be meshed). The method
consists in analytically subtracting the singular part of the potential field resulting from the geometrical
singularity, and solving the regular part (this splitting being of course transparent for the user).

TR 6/17826 DESP -15-

JUNE 2013
UNCLASSIFIED

Poisson BC :
• Dirichlet
• Neumann
• Robin

Field model:
• Conjugate gradient solver
for Poisson eq.
• Implicit solver for non-
linear Poisson eq.
•SC singularities (thin
wires, panels)

Poisson BC :
• Dirichlet

Important aspects of field model
• Electric field computation: solves Poisson equation (with space charge effect)
• Non-linear Poisson eq. (for Boltzmann electrons) solved implicitly : stable even for cells greater than Debye length
• Boundary conditions are important parameters
• Analytical model close to singularities (thin wires and panels) reduces the necessary mesh refinement
• Magnetic field : uniform and constant

Figure 2 - Field model in SPIS 4.3 version

Surface interactions with plasma considered in SPIS are the secondary electron emission under electron and
photon impact. Yields are calculated automatically within SPIS pending on macroscopic material properties
defined at user level. For instance the yield of true electron emission under electron impact is computed
using the maximal yield and the energy of the maximum. Distribution functions are Maxwellian in volume
(or Lambertian in surface). Secondaries from secondaries is activated for electrons from environment and
artificial sources on spacecraft. Artificial sources models are maxwellian (possibly with a drift),
axisymmetric and two axis symmetry (plus sources like field effect emission). Erosion model is applicable to
Xenon ions.

TR 6/17826 DESP -16-

JUNE 2013
UNCLASSIFIED

Surface materials can interact with the environment:
• Collection
• Emission of particles under the impact of primary fluxes (yields, distribution function of emitted p.)
• Emission of particles from an artificial source (e.g. plasma thruster)

Plasma
sources

(UV) Sun flux
Surface interactions: SEE,
photoemission …

Figure 3 - Spacecraft surface interaction with environment in SPIS 4.3 version

 The evolution of potentials on the spacecraft involves an equivalent circuit taking into account the
coating capacitances and conductances (surface and volume conductivities), and also user-defined "discrete"
components (extra resistors, biases or capacitors added between subsystems). A spacecraft circuit implicit
solver was designed to handle problems with very different time scales thanks to physics predictors of the
plasma current variations in reaction to potential changes.

TR 6/17826 DESP -17-

JUNE 2013
UNCLASSIFIED

Electrical components

Dielectric coatings

SC equivalent circuit:
• coatings (RC)
• user-defined electrical
components
• implicit solver

The spacecraft surface potentials evolve with respect to the local collected and emitted currents:
• absolute charging is spacecraft ground potential versus the undisturbed plasma (out of the sheath)
• differential charging is the voltage between each surface and the spacecraft ground

• either from dielectric coatings,
• or from electrical components (RLCV).

The potential evolution is injected in the Poisson solver as a BC.

Figure 4 - Surface potential model in SPIS 4.3 version

Plasma
sources

Matter dynamics :
• PIC, physical masses, phys. and num times
• Boltzmann distribution
• Multizone Boltzmann/PIC
• External BC (open or reflection)

Plasma
injection at
boundaries

Poisson BC :
• Dirichlet
• Neumann
• Robin

Electrical components

Dielectric coatings

(UV) Sun flux

Volume
reactions
(charge

exchange)

Surface interactions: SEE,
photoemission …

Field model:
• Conjugate gradient solver
for Poisson eq.
• Implicit solver for non-
linear Poisson eq.
•SC singularities (thin
wires, panels)

Poisson BC :
• Dirichlet

Matter sources :
• bi-Maxwellian for ions (possibly drifting)
• bi-Maxwellian for electrons

SC equivalent circuit:
• coatings (RC)
•user-defined electrical
components
•implicit solver

Figure 5 - Global spacecraft plasma interaction model in SPIS 4.3

TR 6/17826 DESP -18-

JUNE 2013
UNCLASSIFIED

The numerical algorithm consists in imbricate loops of calculations:
o Matter dynamics

o Each population k is injected, moved, collected on a given duration popDuration(k), using a
time step popDt(k)

o Field/Matter coupling
o Poisson equation is solved with the particles space charge
o This loop is repeated until plasmaDuration time is reached (with plasmaDt time steps)

o Spacecraft level
o Computation of the collected current during the time step simulationDt
o Computation of the emitted current (sources, interactions) during the time step simulationDt
o Surface potential evolution during simulationDt are computed with the circuit solver

(conductance, capacitance and inductance model)
o The simulation stops when the time reaches duration

Figure 6 - Numerical loops in SPIS

The user (and software) interface is a real simulation framework, with the capability to handle simulation
data (CAD objects, mesh, groups etc. and data fields living on them, for pre processing or post processing)
and handle tasks chaining thanks to a task manager. Following the open source logics, as many external
elements as possible were integrated or interfaced with SPIS. The modelling and meshing are performed by
the external tool GMSH. Three-dimensional visualisations make use of VTK scientific visualisation toolkit
(and Cassandra viewer internally, or Paraview externally). Many other open source tools are also used
(JFreeChart for 2D plotting, Jython, a Java-based Python interpreter, for the script console, etc.).

The interfacing between the SPIS-UI framework and the numerical kernel SPIS-NUM, is presented in details
in [RD2]. SPIS-UI is a modular framework, where each functional module is embedded under the form of
standardized containers called Tasks. This includes SPIS-NUM which is called through the JyTop and
SpisNumCaller classes, themselves called through different Tasks. Scheme 1, here-after shows the control
process between the calling tasks, on the left side, and the low level components like SPIS-NUM, on the

Matter
Pop. 1

Matter
Pop. N

popDuration1 popDurationN

thisPopDt1 thisPopDtN

Matter

Poisson
equation
solving

Fields

plasmaDuration
plasmaDt

PlasmaSpacecraft

Spacecraft
Circuit
solving

Duration
simulationDt

Simulation

Outputs

Inputs

TR 6/17826 DESP -19-

JUNE 2013
UNCLASSIFIED

right side, through the different embedding classes. The elements written in blue are methods or objects of
SPIS-NUM. The list given in ANNEXE-1 completes this scheme and gives the correspondence between
most of the tasks and the low level components and business codes.

Figure 7 - Current control of SPIS-NUM from SPIS-UI

The TaskJyTop task performs in one-click the equivalent of the TaskSolverInit, TaskbuildSim,
TaskSolverRun and TaskSolverRead, which corresponds to the whole simulation process.
Inputs data needed by SPIS-NUM are provided under the form of:

 A set of three meshes (computational volume, S/C surface mesh, external boundary mesh);
 A set of fields deployed on the meshes, i.e DataFields converted as arrays;
 A set of global parameters;
 NASCAP based material descriptions.

The DataField and mesh conversion, including the elements renumbering, are performed in the
TaskSpisNumInterface task, that itself call the SpisNumInterface class. Most of the mesh structure
conversion and extraction (e.g extraction of the surface mesh corresponding to the S/C surface) are
performed by the Penelope library (previously called JFreeMesh). All converted data (meshes) are stored in
the sharedNum['SNMesh'] shared dictionary, itself used by JyTop4. Local parameters and material
properties are converted directly into the JyTop4 class. All parameters are passed under the form of “simple”
structures, i.e. arrays of local parameters or key-value set for global parameter.

The results are extracted from SPIS-NUM through the SpisNumSimulationDataExtractor. Fields deployed
on the grid are converter into DataFields.

TR 6/17826 DESP -20-

JUNE 2013
UNCLASSIFIED

This scheme shows the limitations of the present implementation of the SPIS-UI / SPIS-NUM interface.
Most of the settings are passed to SPIS-NUM through its constructor. In this context, it is quite difficult to
adjust or restart the simulation and/or finely control it from the SPIS-UI. There is no possibility of command
or triggering during the simulation running (i.e. integrate() function of SPIS-NUM) from SPIS-UI.
Reciprocally, there is no notification mechanism for SPIS-NUM to SPIS-UI to inform this last one of the
progress status of the simulation and/or a key event like the validation of produced data. Last, in the current
implementation, if the data extraction can be done on-demand from SPIS-UI, only data already previously
generated by SPIS-NUM and will not force this one to update these results. For instance, if the period to
generation of output (e.g. plasmaPotMapMonitorStep) is higher than the current simulation time no output
will be generated and could be recovered by the data extraction module. On the other hand, all generated
data are extracted at the end of the simulation in the same time and loaded in memory, leading sometimes to
a memory overflow at the end of the simulation. These elements present a severe limitation for scientific
application, where simulations can be very large and long and/or where numerous data should be extracted at
a given frequency (Tobservation).

2.2. Main new components of SPIS-SCIENCE

According the previous analysis and [SRD], the main components that have been modified or added to the
structure are:

 Instruments modules aiming at measuring particle spectrograms and plasma characteristics within
the course of the simulations

 Semi-Transparent Grids to mimic scientific instrumentation.
 Non-maxwellian distribution functions for ambient an secondary populations
 Thin elements such as wires and solar panels
 Performance and accuracy increase
 Extension of material properties format (tables)
 Extended control of the Num integration by UI in order to interact more easily with the user
 Development of Transitions aiming at simulating transient phase in some typical situations.

The main new or modified components of SPIS-SCIENCE are schematically represented in Figure 8 and
Figure 9.

TR 6/17826 DESP -21-

JUNE 2013
UNCLASSIFIED

5/ Thin wire
2/ modify injection
of PIC particles

4/ Virtual plasma
sensor

3/ Particle
Detector

6/ Grids

ambient species
2ary species

1/ Upgrade Boundary Conditions

good ? bad
statistics ?

Figure 8 - Main new or modified components of SPIS-SCIENCE (1/2)

10/ Langmuir
probe

VSC

B

7/ VSC cross B field

8/ Solar array plasma
interaction

11/ SEE and
photoemission

9/ Plasma
source
activation or
deactivation

13/ performance

12/ spinning
spacecraft

Figure 9 - Main new or modified components of SPIS-SCIENCE (2/2)

TR 6/17826 DESP -22-

JUNE 2013
UNCLASSIFIED

2.3. Architecture of SPIS components

A large number of packages and classes has been modified or added to the previous SPIS versions. In
conjunction with SPIS-GEO activity, the framework has been deeply refactored and the UI2NUM phase has
been significantly improved. The numerical kernel was also largely improved and increased to answer the
user and software requirements.

In this section, we present the full list of packages of the new SPIS version.

2.3.1. Overview

SPIS-SCI is fully based on the current stable version of the main branch of SPIS in its version 5.0, as
developed in the frame of SPIS-GEO/MEO project. As for the previous versions (4.3 and earlier, also called
Legacy), SPIS is divided into main layers:

o SPIS-NUM, which corresponds to the simulation kernel;
o SPIS-UI, which corresponds to the Integrated Modelling Environment (IME) to drive the whole

modelling process and support the dedicated GUI.

In the frame of the SPIS-SCI project, both layers have been updated and extended to integrate the additional
functions and capabilities requested by the objectives of the project. For both layers, the developments done
here have been reversed into the main development branch of SPIS.

2.3.2. SPIS-NUM

 The numerical kernel block diagram of the next figure presents the SPIS-NUM packages and their
main interactions. The top level class called by UI is NumTopFromUI and is constituted by a simulation,
itself gathering a spacecraft object, a plasma and possibly extra objects such as grids and transitions. The
volume (VOL) package is composed of classes relative to volumic meshes, data fields living on this mesh,
population distributions and interactions. The plasma object is composed of volume distributions associated
to a Poisson solver, located in the Solver package. This package also provides Matter classes to move
particles of the Volume package. The spacecraft is composed of a circuit solver located in the Circ package.
The circuit solver also takes account of semi-transparent grid objects. Both spacecraft and grids are
associated to surface interactions of the SURF package (collection, emission of particles). The particle
pusher of the Matter solver moves particles on the volume mesh and mark particles arriving on spacecraft
and grid surface meshes. Then, the surface interactions generate secondary surface distributions used as
injection condition of volume distributions. The Transition classes modify the simulation object and its
components during the time integration. Finally, the UTIL package collects a large number of methods
(sampling, mathematics, etc…) used in all packages.

TR 6/17826 DESP -23-

JUNE 2013
UNCLASSIFIED

TOP Package

SC Plasma

SimulationGrid

NumTopFromUI

Transition

CIRC Package

SOLVER Package

Circuit

Matter

Poisson

VOL Package

Distrib
Field

Interact
Mesh

SURF Package

Distrib

Field

Interact

Mesh

UTIL Package

Figure 10 - Block diagram of SPIS-NUM packages, with main interactions between them

 For a complete understanding of SPIS-NUM classes hierarchy and interactions, a proper
documentation can be generated using the Javadoc command of java. In the hierarchy tree below, we have
highlighted of green and blue the components developed or modified in the frame of the SPIS-SCIENCE
and SPIS-GEO activities respectively.

 java.lang.Object
 spis.Util.Func.Abs (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Surf.SurfField.AbstractCurrentScaler (implements spis.Surf.SurfField.CurrentScaler)
 spis.Surf.SurfField.BarrierCurrentScaler
 spis.Surf.SurfField.VariableBarrierCurrentScaler
 spis.Surf.SurfField.VariableBarrierCurrentScaler2
 spis.Surf.SurfField.AutomaticBarrierCurrentScaler
 spis.Surf.SurfField.GlobalTempCurrentScaler
 spis.Surf.SurfField.OMLCurrentScaler
 spis.Surf.SurfField.OMLCurrentScalerWithNeutrality
 spis.Surf.SurfField.OMLCurrentScalerWithNeutralityInf
 spis.Surf.SurfField.SecondaryRecollectionCurrentScaler
 spis.Surf.SurfField.SmoothedGlobalTempCurrentScaler
 spis.Surf.SurfField.LocalTempCurrentScaler
 spis.Surf.SurfField.LocalOMLCurrentScalerWithNeutrality
 spis.Surf.SurfField.NoVariationCurrentScaler
 spis.Surf.SurfField.OldBarrierCurrentScaler

TR 6/17826 DESP -24-

JUNE 2013
UNCLASSIFIED

 org.spis.instruments.AbstractInstrument<MeasureType,ParameterType> (implements
org.spis.instruments.Instrument<MeasureType,ParameterType>)
 spis.Util.Instrument.TopInstrument<T>
 spis.Util.Instrument.ParticleDetector
 spis.Util.Instrument.LangmuirProbe
 spis.Util.Instrument.PlasmaSensor<T>
 spis.Util.Instrument.AvSCPotentialMonitor
 spis.Util.Instrument.ESNCurrentMonitor
 spis.Util.Instrument.ESNIndividualCurrentMonitor
 spis.Util.Instrument.ESNPotentialDifferenceMonitor
 spis.Util.Instrument.ESNPotentialMonitor
 spis.Util.Instrument.ESNPotentialVariationMonitor
 spis.Util.Instrument.LinePS<T>
 spis.Util.Instrument.PotentialLPS
 spis.Util.Instrument.PointPS<T>
 spis.Util.Instrument.DensityPS
 spis.Util.Instrument.PotentialPS
 spis.Util.Instrument.SphericalPS<T>
 spis.Util.Instrument.EnergyDistFuncPS
 spis.Util.Instrument.TotalEnergyDistFuncPS
 spis.Util.Instrument.KineticEnergyPS
 spis.Util.Instrument.VelocityDistFunctionPS
 spis.Util.Instrument.SurfaceFluxDistFunctionPS
 spis.Util.Instrument.VolDistribMomentPS
 spis.Util.Instrument.SimulationTimeStepMonitor
 spis.Util.Instrument.TotalCurrentOnSC
 spis.Util.Instrument.TotalEnergyPS
 spis.Util.Instrument.TotalSuperParticlePS
 spis.Util.Instrument.VirtualInstrument<T>
 spis.Util.Instrument.VirtualParticleDetector
 spis.Util.Func.And (implements spis.Util.Func.TestOfInt)
 spis.Util.Vect.Array
 spis.Solver.Matter.BasicPusher (implements spis.Solver.Matter.ParticlePusher)
 spis.Vol.BC.BC
 spis.Vol.BC.PoissonBC
 spis.Vol.BC.DirichletPoissonBC
 spis.Vol.BC.FourierPoissonBC
 spis.Vol.BC.MixedDirichletFourierPoissonBC
 spis.Vol.VolMesh.Boundary
 spis.Solver.Poisson.BoundaryElecFieldModel (implements spis.Solver.Poisson.ElecFieldModel)
 spis.Vol.VolField.BoundaryField
 spis.Util.Func.BoundedFunctionOf3Scal (implements spis.Util.Func.ScalFunctionOf3Scal)
 spis.Vol.VolMesh.Centring (implements java.io.Serializable)
 spis.Circ.Circ.Circ (implements spis.Circ.Circ.CircIf)
 spis.Circ.CircField.CircField
 spis.Circ.CircField.DirCircField
 spis.Solver.Circuit.CircSolve
 spis.Solver.Circuit.CircSolveTestImplicit
 spis.Solver.Circuit.CircSolveDouble
 spis.Solver.Circuit.CircSolveTest
 spis.Util.io.CircuitReader
 spis.Util.Func.CombinationOfTwoScalFunctionOfScal (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Top.Default.Common
 spis.Solver.Matter.ComplexPusher (implements spis.Solver.Matter.ParticlePusher)
 spis.Surf.SurfField.ConstantCurrent (implements spis.Surf.SurfField.CurrentScaler)

TR 6/17826 DESP -25-

JUNE 2013
UNCLASSIFIED

 spis.Util.Func.ConstantFunction (implements spis.Util.Func.ScalFunctionOfNothing, spis.Util.Func.ScalFunctionOfScal)
 spis.Surf.SurfInteract.ConstantFunctionOfDistrib (implements spis.Surf.SurfInteract.FuncOfDistrib)
 spis.Util.List.ConstantSampler (implements spis.Util.List.OneDSamplable)
 spis.Util.Func.ConvertibleUnitScalFunctionOfScal (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Func.Cos
 spis.Util.Func.Exp
 spis.Util.Func.ExpPlusConst
 spis.Util.Func.Heaviside
 spis.Util.Func.IsEqual (implements spis.Util.Func.TestOfInt)
 spis.Util.Func.LimitedExp
 spis.Util.Func.Log
 spis.Util.Func.Max
 spis.Util.Func.Min
 spis.Util.Func.OMLFactor
 spis.Util.Func.Sin
 spis.Util.Func.VariableTeLaw
 spis.Vol.Geom.CoordinateSystemTools
 spis.Vol.Geom.CartesianSystem
 spis.Vol.Geom.CylindricalSystem
 spis.Vol.Geom.SphericalSystem
 spis.Util.Func.CosMultiD (implements spis.Util.Func.ScalFunctionOfVect)
 spis.Util.Instrument.CreateDefaultMonitoringInstruments
 spis.Util.Monitor.DensityMonitor (implements spis.Util.Monitor.Monitorable)
 spis.Surf.SurfInteract.DeprecatedModelParamSet
 spis.Circ.Circ.DIDV
 spis.Circ.Circ.DIDVfromSurfDIDV
 spis.Circ.Circ.MultipleDIDV
 spis.Circ.Circ.reducableDIDV
 spis.Circ.Circ.RedDIDVfromRegDIDV
 spis.Util.Phys.DimScal (implements java.io.Serializable)
 spis.Util.Phys.ScalableScalar
 spis.Surf.SurfInteract.DiscretisedFunctionOfParticleEDeprecated
 spis.Util.Instrument.DistFuncOfOneVariable (implements java.io.Serializable)
 spis.Util.DistribFunc.DistributionFunction
 spis.Util.DistribFunc.TabulatedDistributionFunction
 spis.Util.DistribFunc.IsotropicTabulatedDistributionFunction (implements spis.Util.DistribFunc.IsotropicInterface)
 spis.Util.DistribFunc.IsotropicBiMaxwellianDF
 spis.Util.DistribFunc.IsotropicKappaDF1
 spis.Util.DistribFunc.IsotropicMaxwellianDF
 spis.Util.DistribFunc.MaxwellianDF
 spis.Util.Func.DistToPoint (implements spis.Util.Func.ScalFunctionOfVect)
 spis.Util.Func.DriftingMaxwellian3VFunction (implements spis.Util.Func.ScalFunctionOf3Scal)
 spis.Vol.VolField.EField
 spis.Vol.VolField.PotEField
 spis.Util.io.ElecCircuitReader
 spis.Circ.Circ.ElecComponent
 spis.Util.Monitor.ElecSuperNodeMonitor
 spis.Top.Plasma.Environment
 spis.Top.Plasma.BiMaxwellianEnvironment
 spis.Top.Plasma.ExtendedEnvironment
 spis.Util.Monitor.FieldMonitor
 spis.Surf.SurfInteract.FunctionOfDistrib (implements spis.Surf.SurfInteract.FuncOfDistrib)
 spis.Surf.SurfInteract.FunctionOfDistribFromFuncOfPart (implements spis.Surf.SurfInteract.FuncOfDistrib)
 spis.Surf.SurfInteract.FunctionOfParticle

TR 6/17826 DESP -26-

JUNE 2013
UNCLASSIFIED

 spis.Surf.SurfInteract.FunctionOfParticleE (implements spis.Util.Func.ScalFunctionOf4Scal,
spis.Util.Func.ScalFunctionOfScal)
 spis.Surf.SurfInteract.EnergyFunction
 spis.Surf.SurfInteract.InvertableFunctionOfParticleE (implements spis.Util.Func.ReverseUnitCheckable)
 spis.Surf.SurfInteract.RangeFunction
 spis.Surf.SurfInteract.DoublePowerLawRangeFunction
 spis.Surf.SurfInteract.ProtonRangeFunction1
 spis.Surf.SurfInteract.ReciprocalOfFunctionOfParticleE
 spis.Surf.SurfInteract.TransmissionFunction
 spis.Surf.SurfInteract.FunctionOfParticleETheta (implements spis.Util.Func.ScalFunctionOf2Scal,
spis.Util.Func.ScalFunctionOf4Scal, spis.Util.Func.ScalFunctionOf5Scal, spis.Util.Func.ScalFunctionOfScal)
 spis.Surf.SurfInteract.CompositeFunctionOfParticleETheta
 spis.Surf.SurfInteract.DampedEnergyFunction
 spis.Surf.SurfInteract.ElecBackscatterFunction
 spis.Surf.SurfInteract.ExtendedElecBackscatterFunction
 spis.Surf.SurfInteract.GRBOErosionYield
 spis.Surf.SurfInteract.SEEEYieldFunction1
 spis.Surf.SurfInteract.ExtendedSEEEYieldFunction1
 spis.Surf.SurfInteract.SEEPYieldFunction1
 spis.Surf.SurfInteract.FunctionOfParticleNothing (implements spis.Util.Func.ScalFunctionOf3Scal,
spis.Util.Func.ScalFunctionOfNothing)
 spis.Surf.SurfInteract.FunctionOfMaterial
 spis.Util.Func.GFunction (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.List.GlobalMaxwellianDataProvider (implements spis.Util.List.MaxwellianDataProvider)
 spis.Surf.SurfField.GlobalTempCurrentScalerDeprecated (implements spis.Surf.SurfField.CurrentScaler)
 spis.Util.Func.GradCosMultiD (implements spis.Util.Func.VectFunctionOfVect)
 spis.Util.Func.GradPowerLaw (implements spis.Util.Func.VectFunctionOfVect)
 spis.Top.Grid.Grid (implements spis.Util.Monitor.NumericsMonitorable)
 spis.Top.Grid.InteractGrid
 spis.Util.Func.Identity (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.io.InputReader
 spis.Util.Instrument.InstrumentsCatalogue
 spis.Util.OcTreeMesh.IntComparator (implements java.util.Comparator<T>)
 spis.Surf.SurfInteract.InteractModel
 spis.Surf.SurfInteract.MaterialModel
 spis.Surf.SurfInteract.BasicMaterialModel
 spis.Surf.SurfInteract.ErosionMaterialModel
 spis.Surf.SurfInteract.Interactor (implements spis.Util.Monitor.Monitorable)
 spis.Surf.SurfInteract.BasicInducedConductInteractor
 spis.Surf.SurfInteract.CathodeSpot
 spis.Surf.SurfInteract.CathodeSpotElectron
 spis.Surf.SurfInteract.CathodeSpotIon
 spis.Surf.SurfInteract.ErosionInteractor
 spis.Surf.SurfInteract.GenericDFInteractor
 spis.Surf.SurfInteract.GenericPhotoEmInteractor
 spis.Surf.SurfInteract.GenericSEEPInteractor
 spis.Surf.SurfInteract.MaxwellianInteractor
 spis.Surf.SurfInteract.BasicPhotoEmInteractor
 spis.Surf.SurfInteract.BasicSEEPInteractor
 spis.Surf.SurfInteract.MaxwellianInteractorWithRecollection
 spis.Surf.SurfInteract.ImprovedPhotoEmInteractor
 spis.Surf.SurfInteract.RecollPhotoEmInteractor
 spis.Surf.SurfInteract.MultipleInteractor
 spis.Surf.SurfInteract.BasicSEEEInteractor
 spis.Surf.SurfInteract.GenericSEEEInteractor

TR 6/17826 DESP -27-

JUNE 2013
UNCLASSIFIED

 spis.Surf.SurfInteract.MultipleMaxwellianInteractor
 spis.Surf.SurfInteract.PICInteractor
 spis.Surf.SurfInteract.ReflectionInteractor
 spis.Surf.SurfInteract.SolarArrayInteractor
 spis.Surf.SurfInteract.SolarArrayInteractor2
 spis.Surf.SurfInteract.Source
 spis.Surf.SurfInteract.InteractParamSet (implements java.io.Serializable)
 spis.Surf.SurfInteract.ErosionParamSet
 spis.Surf.SurfInteract.GenericParamSet (implements java.io.Serializable)
 spis.Surf.SurfInteract.NascapParamSet
 spis.Util.io.Introspection
 spis.Util.io.IOUtilities
 spis.Util.Func.IsDifferent (implements spis.Util.Func.TestOfInt)
 spis.Util.Func.Kappa1_1D (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Func.Kappa1_3D (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Solver.Util.LeastSquare
 spis.Util.List.LocalMaxwellianDataProvider (implements spis.Util.List.MaxwellianDataProvider)
 spis.Util.Func.LowerGammaIncFunction (implements spis.Util.Func.InvertableScalFunctionOfScal,
spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Func.MaskedIsDifferent (implements spis.Util.Func.TestOfInt)
 spis.Util.Matrix.Matrix (implements java.io.Serializable)
 spis.Util.Matrix.DiagMatrix (implements java.io.Serializable)
 spis.Util.Matrix.DirMatrix (implements java.io.Serializable)
 spis.Util.Matrix.DirMatrixDouble (implements java.io.Serializable)
 spis.Util.Matrix.Rank1Matrix
 spis.Util.Matrix.SparseMatrix (implements java.io.Serializable)
 spis.Util.Matrix.SparseMatrixDeprecated (implements java.io.Serializable)
 spis.Vol.BC.MatterBC
 spis.Vol.BC.ScaledSurfDistribMatterBC
 spis.Vol.BC.SurfDistribMatterBC
 spis.Vol.BC.OneSurfDistribTestableMatterBC (implements spis.Vol.BC.TestableMatterBC)
 spis.Vol.BC.VoltageDependentMBC
 spis.Vol.BC.VoltageGenerator
 spis.Vol.BC.CapacitiveVoltageGenerator
 spis.Util.Func.Maxwellian1D (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Monitor.Monitor
 spis.Surf.SurfField.MultipleCurrentScaler (implements spis.Surf.SurfField.CurrentScaler)
 spis.Surf.SurfField.MultipleScalSurfField
 spis.Circ.Circ.MultipleSurfDIDV (implements spis.Circ.Circ.SurfDIDV)
 spis.Solver.Matter.MultiZone
 spis.Solver.Matter.BoltzmannPICMultiZone
 spis.Util.List.NoStatisticsOptimizer (implements spis.Util.List.StatisticsOptimizerI)
 spis.Circ.Circ.NullSurfDIDV (implements spis.Circ.Circ.SurfDIDV)
 spis.Util.Monitor.NumericsMonitor
 spis.Top.Top.NumTopFromUI (implements spis.Top.Top.UIInvokable)
 spis.Util.OcTree.OcTree
 spis.Util.OcTree.ScalOcTree
 spis.Util.OcTree.TrackedParticlesOcTree
 spis.Util.OcTreeMesh.OcTreeLine
 spis.Util.OcTreeMesh.OcTreeMesh
 spis.Util.OcTreeMesh.OcTreePoint
 spis.Util.OcTreeMesh.OcTreeSurface
 spis.Util.OcTreeMesh.OcTreeVolume
 spis.Util.OcTreeMesh.OcTreeSlab
 spis.Solver.Matter.OldComplexPusher (implements spis.Solver.Matter.ParticlePusher)

TR 6/17826 DESP -28-

JUNE 2013
UNCLASSIFIED

 spis.Util.List.OneDSampler (implements spis.Util.List.OneDSamplable)
 spis.Util.List.MaxwellianEnergySampler
 spis.Util.Func.Or (implements spis.Util.Func.TestOfInt)
 spis.Top.Default.Parameter (implements java.io.Serializable)
 spis.Top.Default.GlobalParameter (implements java.io.Serializable)
 spis.Top.Default.InstrumentParameter
 spis.Top.Default.LocalParameter (implements java.io.Serializable)
 spis.Top.Default.MaterialProperty (implements java.io.Serializable)
 spis.Surf.SurfInteract.ParamSetDeprecated
 spis.Surf.SurfInteract.ParamSetExtractor
 spis.Surf.SurfInteract.ParamSetExtractorDeprecated
 spis.Util.Part.Part
 spis.Util.Monitor.ParticleMeasurementResult (implements java.io.Serializable)
 spis.Util.Part.PartTable
 spis.Util.Phys.Phys
 spis.Top.Plasma.Plasma (implements spis.Util.Monitor.Monitorable, spis.Util.Monitor.NumericsMonitorable)
 spis.Top.Plasma.MeshedPlasma
 spis.Top.Plasma.MmfPlasma
 spis.Top.Plasma.FlexibleMFPlasmaDeprecated
 spis.Top.Plasma.Hybrid1MmfPlasma
 spis.Util.List.PointList (implements java.io.Serializable)
 spis.Util.List.PartList
 spis.Util.List.NotTrackedPartList
 spis.Util.List.RichPartList
 spis.Util.List.FlexiblePartList
 spis.Util.Instrument.PointPlasmaSensor (implements org.spis.instruments.Instrument<MeasureType,ParameterType>)
 spis.Util.Instrument.SphericalPlasmaSensor
 spis.Solver.Poisson.PoissonInit
 spis.Solver.Poisson.PoissonSolve
 spis.Solver.Poisson.PoissonSolver
 spis.Solver.Poisson.PotPoissonSolver
 spis.Solver.Poisson.ConjGrad3DUnstructPoissonSolver
 spis.Util.Func.Power (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Func.PowerLaw (implements spis.Util.Func.ScalFunctionOfVect)
 spis.Util.Func.ProductOfTwoScalFunctionOfScal (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Circ.Circ.RCCabsCirc (implements spis.Circ.Circ.CircIf)
 spis.Circ.Circ.RLCCirc (implements spis.Circ.Circ.ImplicitCircIf)
 java.io.Reader (implements java.io.Closeable, java.lang.Readable)
 java.io.InputStreamReader
 java.io.FileReader
 spis.Util.io.SpisFileReader
 java.io.StringReader
 spis.Util.io.SpisStringReader
 spis.Util.Func.ReciprocalFunction (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.List.Sampling
 spis.Top.SC.SC (implements spis.Util.Monitor.NumericsMonitorable)
 spis.Top.SC.InteractSC
 spis.Top.SC.EquipotSC
 spis.Top.SC.RCCabsSC
 spis.Top.SC.RLCSC
 spis.Util.Func.ScalFuncOfScalFromTestOfInt (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Func.ScalFunctionOfScalFromFunctionOf4 (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Func.InvertibleScalFunctionOfScalFromFunctionOf4 (implements spis.Util.Func.InvertableScalFunctionOfScal)
 spis.Util.Func.ScalFunctionOfScalFromFunctionOf5 (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Top.Top.Scenario (implements spis.Top.Top.UIInvokable)

TR 6/17826 DESP -29-

JUNE 2013
UNCLASSIFIED

 spis.Top.Top.PotentialSweep
 spis.Util.Func.SeparableFunctionOf3Scal (implements spis.Util.Func.ScalFunctionOf3Scal)
 spis.Util.io.Serialisation
 spis.Util.Func.Set (implements spis.Util.Func.ModifInt)
 spis.Util.Func.ShiftSet (implements spis.Util.Func.CombineInt)
 spis.Top.Simulation.Simulation (implements spis.Util.Monitor.NumericsMonitorable)
 spis.Top.Simulation.PlasmaScSimulation
 spis.Top.Simulation.SimulationFromUIParams (implements spis.Top.Top.UIInvokable)
 spis.Top.Transition.SimulationParamUpdater
 spis.Top.Transition.Finalization
 spis.Top.Transition.RCCabsSCUpdater
 spis.Top.Transition.SheathOrPresheathPoissonBCUpdater
 spis.Top.Transition.SourceFluxUpdater
 spis.Top.Transition.SunFluxIntensityUpdater
 spis.Top.Transition.SunFluxUpdater
 spis.Top.Transition.TimeStepForBETs
 spis.Top.Transition.VcrossBfieldUpdater
 spis.Solver.Util.SolverUtil
 spis.Top.Default.SpisDefaultMaterials
 spis.Top.Default.SpisDefaultPartTypes
 spis.Top.Default.SpisDefaultSampling
 spis.Util.io.SpisIO
 spis.Top.Top.SpisTopMenu
 spis.Util.Func.Sqrt (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.io.StandardInputReader
 spis.Util.List.StatisticsCollector (implements spis.Util.List.StatisticsCollectorI)
 spis.Util.List.StatisticsOptimizer (implements spis.Util.List.StatisticsOptimizerI)
 spis.Circ.Circ.SurfDIDVFromMatrices (implements spis.Circ.Circ.SurfDIDV)
 spis.Surf.SurfDistrib.SurfDistrib (implements spis.Surf.SurfDistrib.SurfDistribTag)
 spis.Surf.SurfDistrib.MultipleSurfDistrib
 spis.Surf.SurfDistrib.NonPICSurfDistrib
 spis.Surf.SurfDistrib.FluidSurfDistrib
 spis.Surf.SurfDistrib.AisepsCathodeSurfDistrib
 spis.Surf.SurfDistrib.AisepsThrusterSurfDistrib
 spis.Surf.SurfDistrib.AxisymTabulatedVelocitySurfDistrib
 spis.Surf.SurfDistrib.LocalGenericSurfDistrib
 spis.Surf.SurfDistrib.LocalMaxwellSurfDistrib
 spis.Surf.SurfDistrib.FlexibleSurfDistrib
 spis.Surf.SurfDistrib.FowlerNordheimSurfDistrib
 spis.Surf.SurfDistrib.LocalMaxwellSurfDistribWithMachNotOperational
 spis.Surf.SurfDistrib.MaxwellianThruster
 spis.Surf.SurfDistrib.RecollMaxwellSurfDistrib
 spis.Surf.SurfDistrib.TwoAxesTabulatedVelocitySurfDistrib
 spis.Surf.SurfDistrib.UniformVelocitySurfDistrib
 spis.Surf.SurfDistrib.GlobalSurfDistrib
 spis.Surf.SurfDistrib.GenericSurfDistrib (implements spis.Surf.SurfDistrib.TestableSurfDistrib)
 spis.Surf.SurfDistrib.GlobalMaxwellSurfDistrib
 spis.Surf.SurfDistrib.GlobalMaxwellBoltzmannSurfDistrib (implements spis.Surf.SurfDistrib.TestableSurfDistrib)
 spis.Surf.SurfDistrib.GlobalMaxwellBoltzmannSurfDistrib2 (implements spis.Surf.SurfDistrib.TestableSurfDistrib)
 spis.Surf.SurfDistrib.GlobalMaxwellSurfDistrib2
 spis.Surf.SurfDistrib.PICSurfDistrib
 spis.Surf.SurfField.SurfField (implements java.io.Serializable)
 spis.Surf.SurfField.ScalSurfField (implements java.io.Serializable)
 spis.Surf.SurfField.ScalableCurrent
 spis.Surf.SurfField.VectSurfField (implements java.io.Serializable)

TR 6/17826 DESP -30-

JUNE 2013
UNCLASSIFIED

 spis.Surf.SurfInteract.SurfInteractDeprecated
 spis.Surf.SurfMesh.SurfMesh (implements java.io.Serializable)
 spis.Surf.SurfMesh.UnstructSurfMesh (implements java.io.Serializable)
 spis.Surf.SurfMesh.ThreeDUnstructSurfMesh (implements java.io.Serializable)
 spis.Util.List.SurfSampler (implements spis.Util.List.SurfVeloSampler)
 spis.Util.List.AISEPSLocalSurfSampler
 spis.Util.List.GenericSurfSampler
 spis.Util.List.GlobalMaxwellSurfSampler
 spis.Util.List.GlobalMaxwellSurfSampler1
 spis.Util.List.GlobalMaxwellSurfSampler2
 spis.Util.List.GlobalMaxwellSurfSamplerMuscatSpisWake
 spis.Util.List.GlobalMaxwellSurfSampler1withPot
 spis.Util.List.LocalSurfSampler
 spis.Util.List.AxisymTabulatedSampler
 spis.Util.List.LocalMaxwellSurfSampler
 spis.Util.List.LocalMaxwellSurfSampler1
 spis.Util.List.LocalTrunckatedMaxwellSurfSampler
 spis.Util.List.RecollLocalMaxwellSurfSampler
 spis.Util.List.MaxwellianThrusterSampler
 spis.Util.List.Spherical3dTabulatedSampler
 spis.Util.List.TwoAxesTabulatedSampler
 spis.Util.List.UniformVeloSampler
 spis.Util.Table.Table (implements java.io.Serializable)
 spis.Util.Table.ScalTable (implements java.io.Serializable)
 spis.Util.Table.DoubleScalTable
 spis.Util.Table.FloatScalTable (implements java.io.Serializable)
 spis.Util.Phys.DimVect (implements java.io.Serializable)
 spis.Util.Table.IntScalTable (implements java.io.Serializable)
 spis.Util.Table.VectTable (implements java.io.Serializable)
 spis.Util.Table.SpaceVectTable (implements java.io.Serializable)
 spis.Util.Table.VeloVectTable (implements java.io.Serializable)
 spis.Util.Func.TabulatedScalFunctionOf3Scal (implements spis.Util.Func.ScalFunctionOf3Scal)
 spis.Util.Func.TabulatedScalFunctionOfScal (implements spis.Util.Func.ScalFunctionOfScal)
 spis.Util.Monitor.TaskComputingDuration
 spis.Solver.Matter.TaskOfParticlePusher (implements java.util.concurrent.Callable<V>)
 spis.Top.Simulation.testScenario
 java.lang.Thread (implements java.lang.Runnable)
 spis.Top.Plasma.PlasmaPopMoveInThread
 spis.Solver.Matter.ThreadOfParticlePusher
 spis.Vol.Geom.ThreeDCartesianGeom (implements spis.Vol.Geom.Geom, java.io.Serializable)
 spis.Util.List.ThreeDSphericalSampler
 spis.Util.List.TonduErodedProductSampler
 java.lang.Throwable (implements java.io.Serializable)
 java.lang.Exception
 java.lang.RuntimeException
 spis.Util.Exception.SpisRuntimeException
 spis.Util.Exception.SpisParameterNotFoundException
 spis.Util.Monitor.TimeWatch
 spis.Util.Instrument.TopInstrumentFactory (implements org.spis.instruments.InstrumentFactory)
 spis.Util.OcTree.TrackedParticle
 spis.Util.Monitor.Trajectory (implements java.io.Serializable)
 spis.Top.Transition.Transition
 spis.Top.Transition.BasicEclipseExit
 spis.Top.Transition.ConductivityEvolution
 spis.Top.Transition.LangmuirProbeTransition

TR 6/17826 DESP -31-

JUNE 2013
UNCLASSIFIED

 spis.Top.Transition.SpinningSpacecraft
 spis.Top.Transition.TransientArtificialSources
 spis.Top.Transition.TransitionObserver
 spis.Vol.Geom.TwoThreeDAxisymGeom (implements spis.Vol.Geom.Geom, java.io.Serializable)
 spis.Util.Phys.Unit (implements java.io.Serializable)
 spis.Util.Phys.Unit1 (implements java.io.Serializable)
 spis.Util.Func.UnitUtil
 spis.Util.Vect.Vect
 spis.Vol.VolDistrib.VolDistrib (implements spis.Util.Monitor.NumericsMonitorable)
 spis.Vol.VolDistrib.BoundaryFlux
 spis.Vol.VolDistrib.VolDistribWithIO
 spis.Vol.VolDistrib.CompositeVolDistrib
 spis.Vol.VolDistrib.BacktrackingBoltzmannCompositeVolDistrib
 spis.Vol.VolDistrib.BacktrackingPICCompositeVolDistrib
 spis.Vol.VolDistrib.HybridMZVolDistrib
 spis.Vol.VolDistrib.NoSinkHMZVD
 spis.Vol.VolDistrib.NonPICVolDistrib
 spis.Vol.VolDistrib.AnalyticVolDistrib
 spis.Vol.VolDistrib.AdiabaticMBVolDistrib
 spis.Vol.VolDistrib.GlobalMaxwellBoltzmannVolDistrib
 spis.Vol.VolDistrib.GlobalMaxwellBoltzmannVolDistribWithNeutrality
 spis.Vol.VolDistrib.UnlimitedGlobalMaxwellBoltzmannVolDistrib
 spis.Vol.VolDistrib.TrunckatedGlobalMaxwellBoltzmannVolDistrib
 spis.Vol.VolDistrib.LocalMaxwellVolDistrib
 spis.Vol.VolDistrib.PICVolDistrib
 spis.Vol.VolDistrib.BackTrackingVolDistrib
 spis.Vol.VolDistrib.PICVolDistrib2
 spis.Vol.VolDistrib.PICVolDistribNoAcc
 spis.Vol.VolDistrib.SmartPICVolDistrib
 spis.Vol.VolDistrib.PICVolDistribOld
 spis.Vol.VolField.VolField (implements java.io.Serializable)
 spis.Vol.VolField.ScalVolField (implements java.io.Serializable)
 spis.Vol.VolField.VectVolField (implements java.io.Serializable)
 spis.Vol.VolField.DirVectVolField (implements java.io.Serializable)
 spis.Vol.VolField.PotVectVolField (implements java.io.Serializable)
 spis.Vol.VolInteract.VolInteractor (implements spis.Util.Monitor.Monitorable)
 spis.Vol.VolInteract.DustChargingInteractor
 spis.Vol.VolInteract.MCCInteractor
 spis.Vol.VolInteract.CEXInteractor
 spis.Vol.VolInteract.CEXInteractor3
 spis.Vol.VolInteract.ConstantIonizationInteractor
 spis.Vol.VolInteract.ElasticCollisions
 spis.Vol.VolInteract.PhotoIonization
 spis.Vol.VolMesh.VolMesh (implements spis.Util.Monitor.NumericsMonitorable, java.io.Serializable)
 spis.Vol.VolMesh.UnstructVolMesh
 spis.Vol.VolMesh.ThreeDUnstructVolMesh
 spis.Util.List.VolSampler
 spis.Util.List.GenericVolSampler
 spis.Util.List.GlobalMaxwellVolSampler
 spis.Util.List.GlobalMaxwellVolSampler1
 spis.Util.List.MaxwellVolSampler2
 spis.Util.Monitor.XyData (implements java.io.Serializable)
 spis.Util.Monitor.DocumentedXyData
 spis.Util.Monitor.XyzData (implements java.io.Serializable)
 spis.Util.Monitor.XyzDataRect (implements java.io.Serializable)

TR 6/17826 DESP -32-

JUNE 2013
UNCLASSIFIED

2.3.3. SPIS-UI

 In parallel of the evolution of the simulation kernel (SPIS-NUM), we remind that since the version
5.0, initially developed in the frame of SPIS-GEO/MEO, the SPIS-UI framework has been fully redeveloped
and is now based on the Artenum’s Keridwen Integrated Modelling Environment (IME). Around a central
kernel (controler), Keridwen is designed as a modular framework where each functional block is
dynamically integrated under the form of normalised OSGI bundles. The list of loaded bundles and the
deployment order of these ones are defined through XML based configuration files without any
recompilation.

Without modification of the core software, such approach allows to easily adapt the whole framework to the
specificities of each declination (e.g. SPIS-GEO, SPIS-SCI...) by simple setting of the configuration files
and selection of relevant bundles.

SPIS modules gather the developments and functionalities specifically related to SPIS activities. In order to
reduce and mutualised as possible the maintenance effort, as much as possible generic components, like
mesh loaders or the Groups Editor, are based on pre-existing and already validated external components in
Keridwen or other dependencies.

Technically, Keridwen is divided into two sub-sets:

o Keridwen core, which corresponds to the core library (e.g. interfaces) and low levels components (e.g
controller);

o Keridwen tools, which gather generics tools like CAD tool, mesh Manager, Groups manager...;

By transitivity, SPIS integrates also other external components as software components (e.g. VTK,
JFreeChart, logging system, etc...) or as external components called through a system call (e.g. Gmsh).

Figure 11, here after, illustrates the collaboration/inter-dependency tree between the various OSGi modules.
This scheme shows precisely OSGi modules being part of SPIS and other software. External components
called by transitivity, like Gmsh, JFreeChart or VTk, are not represented here. Most of them are not called
directly from SPIS but through external abstracting components, like Keridwen, Cassandra or Penelope.

TR 6/17826 DESP -33-

JUNE 2013
UNCLASSIFIED

Figure 11: Overview of the whole SPIS architecture and OSGi modules decomposition. Only SPIS and directly related external

modules are illustrated here. Transitive dependencies, like VTK, are not shown in this diagram.

With respect to the previous versions of SPIS (4.3 and earlier), this choice of the OSGI industrial and
reference standard should offer an improved stability, reduced maintenance cost (by mutualisation of
common components) and a better potential interoperability with other modelling tools used at TEC-EES.

TR 6/17826 DESP -34-

JUNE 2013
UNCLASSIFIED

On this basis, a specific central GUI for SPIS and dedicated modules (e.g. bundle of integration of SPIS-
NUM integration and simulation driver) has been developed in the frame of SPIS-GEO. Such SPIS related
modules include the following bundle (the project in which one the main part of the development have been
done is given in parenthesis):

o org-spis-ui-data-mining: Specific tailored declination of the Keridwen data-miner for SPIS (SPIS-
GEO);

o org-spis-ui-electrical-circuit: Editor for the definition of the internal circuit;
o org-spis-ui-geo-wizard: Tailored adaptation of the Keridwen wizard manager for SPIS-GEO. The

model process of SPIS-SCI is based on the same wizard manager with a dedicated scenario (XML
configuration file);

o org-spis-ui-geometry-editor: Tailored integration/adaptation of the Keridwen Geomertry Manager.
This component has been deeply updated to take into account the specificities of SPIS-SCI (handling
of several CAD files for instruments, STG, etc...);

o org-spis-ui-global-parameters: Tailored declination of the Keridwen Global Parameters Editor for
SPIS, including the handling of pre-set parameter lists (i.e. geo standard and worst cases) and
extension to extra parameters required by SPIS-SCI models.

o org-spis-ui-gmsh: Tailored declination of the Keridwen Mesh Editor for SPIS. This module has been
deeply refactored in the frame of SPIS-SCI to handle extra elements like instruments and STG.

o org-spis-ui-group-editor: Integration of the Keridwen Groups Editor, with the development of a set
of dedicated extra filters and pre-processors specific to SPIS (dynamic loading):

o SpisDefaultTypesFilters: Dedicated property types to group types pre-presetting filter, to
simplify the property to groups attribution (development SPIS-GEO, update SPIS-SCI to
handle STG and instruments);

o MeshGroupSplitter: Dedicated group operator to perform the mesh splitting needed by 2D
thin elements (development SPIS-GEO, update SPIS-SCI);

o org-spis-ui-instruments: Integration bundle of the SPIS related instruments (SPIS-SCI
development);

o org-spis-ui-model: Tailored declination of the central data model for SPIS (SPIS-GEO
development);

o org-spis-ui-project: Handling of the SPIS 5.0 persistence scheme (SPIS-GEO development);
o org-spis-ui-project-converter: SPIS legacy (4.3 and earlier) to SPIS 5.0 and higher project

conversion bundle (SPIS-GEO development, update SPIS-SCI);
o org-spis-ui-reporting: Specific setting and integration of the Keridwen auto-reporting module for

SPIS (SPIS-GEO development);
o org-spis-ui-simulation: Dedicated SPIS-NUM integration module and simulation control. This

module integrates the real time monitoring functions (through the SPIS instruments) and the
pause/start function of the simulation look. This module also performs the instantiation of requested
SPIS intruments. This module has been specifically developed in the frame of SPIS-GEO, but has
been deeply refactored in the frame of SPIS-SCI. See the specific TN regarding its detailed
implementation in the SPIS documentation.

o org-spis-ui-tools: Various tools for SPIS.
o org-spis-ui-ui2num: This module is the specific module of interfacing the generic data structures of

SPIS-UI to the specific one of SPIS-NUM. This modules performs, for instance, the volume mesh
conversion, the generation of the specific surface meshes (i.e. spacecraft surface, external boudnaries,
instruments meshes, STG meshes), the mapping of all relevant pre-processing data fields (i.e.

TR 6/17826 DESP -35-

JUNE 2013
UNCLASSIFIED

DataFields to LocalParam conversion), the conversion of all needed properties, like materials, into
SPIS-NUM GenericParamSet and the instantiation of the simulation object (SPIS-NUM). This
module has been specifically developed in the frame of SPIS-GEO, but has been deeply refactored in
the frame of SPIS-SCI to take into account of new evolutions of the API of control of SPIS-NUM
and the support of extra functionalities (extended materials and properties characterisation, support of
instruments, support of STG, improvement and extension of the data miner). See the specific TN
regarding its detailed implementation in the SPIS documentation.

We remind that the whole compilation process of SPIS is based on Apache Maven. This tool manages by its
own the needed dependencies during the compilation, through normalised Maven artefacts. All of these ones
are stored on online Maven repositories. Artefacts corresponding to Artenum’s products are stored on the
public Artenum’s Maven repository (see maven.artenum.com).

We outline that if these various OSGI modules are dynamically loaded at the starting of the framework, they
might be inter-dependant. As a consequence, if the configuration scripts of various SPIS branches (SPIS-
GEO, SPIS-SCI) should be updated in future evolutions, the dependence tree should carefully check before.

2.3.4. Instruments

In the frame of SPIS-SCI, an extra library, called Spis Instruments, has been developed to provide a
normalised interface and API for instruments. This library is developed and maintained in a separated
package from SPIS-NUM and SPIS-UI to avoid direct cross dependency outside the existing bundles of
interfacing.

Spis Instrument has fully been developed in the frame of SPIS-SCI, however, and in a wish of normalisation
and simplification of the maintenance, most of the monitoring tools of SPIS-GEO/MEO have been rewritten
on the basis of the normalised Spis Instrument interface.

The Spis Instrument package is detailed later on in the present document. The global interfacing with other
components is described in paragraph 3.2.1.

2.4. External components

The Interface with external components is described in the “Interface Control Document (ICD) and Software
Life Cycle (SLC)" document.

TR 6/17826 DESP -36-

JUNE 2013
UNCLASSIFIED

3. DETAILED DESIGN

This section presents the detailed design of SPIS-SCIENCE developments. The matrix of compliance
between the SRs and the developed routines is given in 3.1. For the sake of clarity, next sections follow the
same order as in the SRD [AD4].

3.1. Matrix between SR and Developments

The matrix between each (group of) SR(s) [AD4] and the sections describing the software developments of
SPIS-SCI is presented below.

SR
or group of SR

Title Design described in section #

SR-PD-001
Particle Detector java OO
interface

3.2.3

SR-PD-002
Particle Detector User
Interface

3.2.3

SR-PD-003
Virtual particle detector
meshing

3.2.5

SR-PD-004 Advanced particle pusher 3.2.3.3 and 3.2.5.2

SR-PD-006
Particle counting 2: Test
Particle method

3.2.3.3 and 3.2.5.2

SR-PD-010 Advanced TP method 3.2.3.3 and 3.2.5.2

SR-PD-011
Basic particle detector
outputs

3.2.3.4

SR-PD-012
Post-processed
distributions functions

3.2.3.4 and 3.2.3.5

SR-PD-013
Particle detector transfer
function

3.2.3.4 and 3.2.3.5

SR-PD-014
Monitoring of tracked
trajectories

3.2.3.4 and 3.2.3.5

SR-VPS-001
java OO interface for Virtual
Plasma Sensor

3.2.6

SR-VPS-002
Virtual Plasma Sensor User
Interface

3.2.6

SR-VPS-003 Point plasma sensors 3.2.6
SR-VPS-004 Spherical plasma sensors 3.2.6
SR-STG-001 CAD modelling of STG 3.3.1
SR-STG-002 STG potential 3.3
SR-STG-003 STG collected current 3.3
SR-STG-004 STG emitted current 3.3

SR-ESC-001
Distribution functions for
ambient plasma

3.4

SR-ESC-002
Upgraded matter boundary
conditions

3.9.2.1

SR-ESC-003
Upgraded electric field
boundary conditions

3.9.2.2

SR-ESC-004
Upgraded particle transport
model

3.8.1

TR 6/17826 DESP -37-

JUNE 2013
UNCLASSIFIED

SR
or group of SR

Title Design described in section #

SR-PS-001
Double maxwellian
photoelectron distribution

3.4.3 and 3.5

SR-PS-002
Isotropic photoelectron
distribution

3.4.2 and 3.5

SR-PS-006 Self-shadowing 3.5.3
SR-PS-008 Isotropic SEEE distribution 3.5.2.2
SR-PS-010 SEEE yield user definition 3.5.2.1
SR-PS-011 Photo ionisation of neutrals not described, see SUM
SR-FGS-001 Thin planes 3.6

SR-FGS-002
Solar arrays plasma
interaction

3.5.4

SR-FGS-003
Motional electric field E = v
× B.

3.8.2

SR-FGS-004 Thin wires- thin booms 3.6

SR-SP-001
Advanced material
properties

3.5.1

SR-SP-002
Improvement of UI/NUM
interface

2.3 and 3.2.2.3

SR-SP-003 Parameter updater class 3.7

SR-SP-004
Spinning Spacecraft
Updater

3.7

SR-SP-005 Plasma source updater 3.7
SR-SP-006 Bias voltage updater 3.2.4 and 3.7

SR-SP-008
Scenario/Transition
overlayer

3.7

SR-SP-009
Scenario for spinning
spacecraft

3.7

SR-SP-010
Scenario for plasma
sources

3.7

SR-SP-011 Scenario for bias voltage 3.2.4 and 3.7

SR-SP-014
Stopping and restarting a
simulation

3.10.2

SR-SP-015
S/C surface Potential vs.
time monitoring

not described, see Cassandra documentation.

SR-PE-002
Exact varying number of
super particles

3.9.1

SR-PE-004 Fast run speed 3.9.3, 3.9.4, 3.9.5

3.2. Instruments

3.2.1. Objectives

The objective of the instruments is to provide the user with specific information on the simulation outputs.
The results provided depend on the sub-type of instruments.

In order to simplify and normalize the access to scientific data, observations (i.e. data extraction) are done
through a set of classes of instruments, each of them implementing a normalized interface called Instrument.
The Instrument interface offers a normalized API to extract scientific data and information from the
simulation kernel and return them to the modeling framework under a standardized form. Each concrete
implementation of the Instrument interface should implement it.

TR 6/17826 DESP -38-

JUNE 2013
UNCLASSIFIED

As real scientific instruments and/or detectors, Instruments can be executed in two modes:
 On user demand, from the modeling framework, for a punctual and specific observation;
 On the basis of regular observations using a sample frequency defined at the framework level;

Outputs from Instruments can be:

 DataFields of local data deployed on the grid (e.g. maps of potential);
 Times series, including spectrograms;
 Tabulated data and histograms.

Settings are previously defined through the pre-processing information like , global parameters, geometrical
description and settings.

A notification/listener system between the Instrument and the simulation kernel has been implemented.

The Instrument access directly to the SPIS–NUM objects and is itself accessible from SPIS-UI. Next figure
summarizes this approach and provides a simplified collaboration diagram.

Normalised Interface
And Data Formats

Notification
command

Time stamp
or update notification

TR 6/17826 DESP -39-

JUNE 2013
UNCLASSIFIED

3.2.2. Global design

3.2.2.1. Implementation of the Instrument Interface

The UML diagram in Figure 12 gives a first proposition of API of the Instrument interface and its
associations with the SimulationFromUIParams class. It follows the Observer/Observable pattern. The
observable is the simulation (the observed parameter being the current physical time of the simulation). The
observers are the realizations of the interface Instrument that are added to the simulation.

Figure 12 - Detailed API of the Instrument interface and example of the inheritance scheme for various implementations

TR 6/17826 DESP -40-

JUNE 2013
UNCLASSIFIED

Each instrument should implement this interface. The Instrument is identified through its Id. A Name
completes this identification for the user. Accessors have been defined for both. The measure is started on
request through the performMeasure method or every Tsample duration. Tsample corresponds to the
sampling period. Because, some types of measurements require an observation duration, a Tobserve, is
defined. For both accessors have been implemented. The performMeasure method can be called by both the
SPIS-UI and the SPIS-NUM layers. By this all use modes can be done.

The methods isMeasureValid() et setMeasureValidity() handles interactions with the SPIS-NUM kernel and
the user through GUI. It is used to determine if the performMeasure method can be considered as successful
or if a second run with different parameters is necessary. This method is concretely realized by classes of
instruments that really offer the possibility for the user to interact with. It is for example the case of particle
detectors (as e.g. the energy range of the test particle method can be interactively refined by the user).

The getMeasure method returns the result of the measure to SPIS-UI under the form of a normalised form. A
MethodType field (String) defined in static for each implementation allows selecting the type of measure
returned if the current instrument can generate several types of outputs.

In order to notify an external components that the measure is valid (for instance), listener have been added
through the addListener method. This allows the UI level to be notified when a measure is ready at the
Instrument level itself or from the SPIS-NUM level.

3.2.2.2. Integrated Data structure and interface

Each implementation of the Instrument interface should type its output data (T parameter in the generic
characterization). In this sense, the instruments can be returned only on output data, but this one can be a
complex object structure, here after caller MeasuredData, gathering the different outputs. The selection of
the relevant physical output is then done on the MeasuredData object itself.

MeasureData include meta-data for a better tracking of the measured data (such as time).

If, needed, the same approach can be done on the NUM layer to define MeasuredData objects independent
on external libraries.

3.2.2.3. Collaborative process UI/Instruments/NUM

In order to keep instruments independent on tailored low-level libraries, like SPIS-NUM, it is proposed that
the Instrument interface and its implementations be packaged in an independent package. Such approach
allows using them independently in each level (i.e. SPIS-NUM and SPIS-UI), without having the necessity
to load the whole components of the other parts.

Instruments are added to the simulation after the UI2NUM phase. Each type of instruments needs input
parameters called InstrumentParameters. After calling the default constructor, the default mandatory
parameters are built at NUM level with default values by a call to defaultMandatoryParameters() which
returns the list of parameters that must be initialized. They are monitored to the user which can update them
at UI level through the instrument wizard. They are then checked NUM level in order to verify the
compatibility of the detectors with the simulation (as e.g. not possible to monitor a population which does

TR 6/17826 DESP -41-

JUNE 2013
UNCLASSIFIED

not exist). Messages are monitored in the console or in the terminal shell indicating which updates shall be
done BEFORE the simulation is run (otherwise, an Exception is thrown and the simulation crashed).
The number and type of mandatory parameters depends on the instrument itself. Description of each
parameter is given in the wizard using the information provided in NUM.

Briefly, the collaboration of SPIS packages is the following:
SPIS-UI:

 builds the simulation from the GUI framework data (as usual)
 converts the simulation from UI to NUM
 instantiates instruments using the minimal constructor (passed variables: Id and name of the

instrument, the simulation itself)
SPIS-NUM:

 informs UI of the possibilities offered in term of instrument input parameters (with default values)
SPIS-UI:

 invites the user to set the mandatory parameters
 calls the initialize method coded at NUM level using the data passed by the user at GUI level

SPIS-NUM:
 initializes the instrument
 informs UI of possible invalid instrument parameter, in which case an InvalidInstrumentException is

thrown (as eg no possibility to measure secondary electron if this population was not created before).
SPIS-UI:

 asks the user to change parameters if necessary
 adds the instruments to the numerical simulation core
 starts the numerical integration

SPIS-NUM:
 runs the simulation including,
 performs the pre-defined or user requested prompt measurements

SPIS-UI:
 monitors the results in different panels
 gets user notifications of instrument modification (performMeasure)
 updates the characteristics of the instrument

3.2.2.4. Implementation classes

In this project, three classes implement the interface Instrument: the ParticleDetector, the
VirtualParticleDetector and the PlasmaSensor.

o The ParticleDetector provides mainly the particle distribution functions on dedicated spacecraft
surfaces. They basically rely on a Test Particle (TP) method which consists in calculating the
particle trajectories in a frozen electromagnetic field, by a series of forward and backward tracking.
The LangmuirProbe instrument extends the ParticleDetector class by introducing IV sweep coupled
with TP.

o The VirtualParticleDetector has basically the same architecture except it performs the TP onto
surfaces outside the spacecraft (virtual surfaces). They do not interact with the plasma and
spacecraft dynamics.

TR 6/17826 DESP -42-

JUNE 2013
UNCLASSIFIED

o The PlasmaSensor class provides regularly the time evolution of scalars (or more complex data such
as distribution functions or linear data) in the plasma volume domain during the simulation (such as
potential, density). It is mainly used to check the convergence of the plasma dynamics at a specific
location of the plasma volume (not on the spacecraft). They do not interact with the plasma and
spacecraft dynamics.

<<interface>>
Instrument

ParticleDetector VirtualParticleDectector PlasmaSensor

<<realize>>

extends

<<realize>>

DensityPSLangmuirProbe

extends

Figure 13 - Inheritance tree of the Instrument interface. Detailed implementation involves intermediate classes.

3.2.3. Particle detectors

The main objective of the particle detector is to provide detailed information about one population simulated
in SPIS. The idea is to mimic the measurements done by real particle detector on board of a spacecraft.
Usually, the difficulties of this kind of measurement in numerical simulation comes from the multi-scale
problematic, i.e. a simulation box for a spacecraft in on the order of several tens of meters but the detection
area of a particle detector is on the order of magnitude of millimeters. Furthermore, on this detector, we want
to obtain enrich data in comparison to other surfaces. On a standard surface in SPIS, the most important data
is the flux of particle to compute the potential equilibrium but the statistical accuracy is rapidly attained
(with 100 macro-particles, the flux computed has a statistical error of 10%). On detector surface, the
objective is to compute a three dimensional distribution function of velocity thus the number of macro-
particles should be larger than on a standard surface.

There are two solutions in order to control the statistic on the detector surface. The first solution is to
optimize the PIC simulation in order to increase the statistics of the particle collected by the detector surface.
But, these methods are known to have a limited effect and a slow convergence toward the desired statistics
in this kind of situations. This method is also used to increase the statistics more globally in volume but it is
not sufficiently efficient for particle detector. The second solution is to use a backtracking technique to
calculate the distribution function. The drawbacks are that this technique can be used only for non-
collisionnal species and it assumes that the situation is quasi-stationary for the particle (i.e. the potential map
does not change a lot during the particle path). This technique has been selected for the particle detectors. It
has the advantage that the distribution function statistics on the detector can be fixed independently from the
PIC simulation.

TR 6/17826 DESP -43-

JUNE 2013
UNCLASSIFIED

The general overview of the Particle Detector interaction with the simulation, from user point of view, is
depicted in Figure 14. When the current time step of the simulation reaches the instant of an instrument
measurement, the particle detection is performed. The result of this observation (referred as “Obs”) is
provided to the user, with possibility to reset the detector parameters and re-launch the calculation (to obtain
better statistics!). Once the user is satisfied, he notifies the Instrument through the GUI that the simulation
can be continued.
Remark: In the case the user does not want to interact with the PD or wait to long, the observation is
considered as successful and the simulation is continued. This permits to resume the simulation without
spending more time.
Another development consists in performing an observation on user demand. The signal from the user is
collected in the GUI and passed to the Instrument, which proceed to the launch of the particle detection once
the current plasma-spacecraft integration loop step is completed.

Measurement
efficient ?

Integrate Integrate

Particle detector 1

Particle detector 2

Instrument-PD
Level

Spis NUM
Level

Spis UI
Level

Obs 1

T detector 1

User interactions

T detector 2

Obs 2

Integrate

Obs 1

Integrate

Measurement demand

Measurement
efficient ?

Time notification

No Yes YesOn
PD1

Measurement
efficient ?

No answer or
No interaction

with PD2

Num to PD time stamp

PD to Num pause simulation signal and start observation

PD to Num resume simulation signal

Num to PD, PD to user results delivery
User to PD, PD to Num restart observation signal

Time along the simulation

Figure 14 - Control of the simulation and particle detector observations at user/UI, Instrument/PD and NUM levels

TR 6/17826 DESP -44-

JUNE 2013
UNCLASSIFIED

3.2.3.1. Input parameters

Figure 15 - Mandatory parameter for Particle Detectors

In the interface dedicated to instruments, all the mandatory parameters represented in the previous figure are
set with default values to be modified by the user. These parameters are updated after each change using the

 button.

The "instrumentSamplingPeriod" parameter defines the period of particle detector measurements in seconds.
The SPIS simulation will automatically adapt the time step of the simulation to perform the measurement at
the exact requested period. The user may also use the interactive capabilities of instruments and demand a

measurement by clicking on . After this live measurement, next measurements will be done with the
same period as initially defined.

The "instrumentPop" parameter defines the name of the population to backtrack. This population must exist
in the simulation but there is no constraint in its type. The backtracking indifferently works for
PICVolDistrib or GlobalMaxwellBoltzmannVolDistrid and for all the volume distributions available in SPIS
5. If the population does not exist, an error message will appear as a popup or in the console at the
instrument creation. At the message occurrence, the list of existing population names will be displayed and
the user will be invited to change the value of this parameter.

The "instrumentSupportId" parameter defines the id of the surface where the instrument is plugged. It could
be noticed that several instruments can hold on the same support.

Two modes are implemented for the particles detector. They are controlled by the parameter
"instrumentMode".

TR 6/17826 DESP -45-

JUNE 2013
UNCLASSIFIED

- Mode 0 is the single distribution function mode. A single but accurate distribution function is
calculated for the whole detector surface. The detector acceptance angle and orientation are taken
into account (i.e. "instrument_OutputBasisVect" parameters, "instrument_LocalBasis_theta" and
"instrument_LocalBasis_Phi" for the orientation of the detector and "instrument_AncceptanceAngle"
parameters for the acceptance angles). This mode is well adapted to planar (or quasi-planar) detectors
and only approximate in case of radius of curvature.

- Mode 1 is the multiple distribution functions mode. One distribution function is calculated for each
surface element of the detector. To preserve the computational costs, the statistics used in TP method
is lower than in mode 0 and the distribution function is a bit noisier. The interest of the mode 1 is
however to obtain an accurate value of the flux on a non-planar surface. The acceptance angle and
the orientation are not defined in this case (the full velocity space is tracked). This mode is
interesting for Langmuir Probe, especially.

The "instrumentEmin" and "instrumentEmax" parameters define the instrument energy range. NB: this is
used both in mode 0 and in mode 1; thus applied to calculate both the flux and the currents too.

The "instrumentOutputLevel" parameter defines the verbosity of the detector outputs (see output section).
The "instrumentEintervalNbr" parameter corresponds to the number of energy intervals used to plot the
results.
The "instrumentOriginOutputs" parameters are used to define the origin Cartesian coordinates of the results
generated in ASCII file (list of particles with their position).
The "instrument_EnergySlice" parameter is the energy used to perform an angular 2D slice of the
distribution function.
The "instrumentTrajNbr" parameter is the maximal number of trajectories plotted from the detector at each
measurement.

3.2.3.2. Detector orientation

WARNING: This section concerns only the particles detectors created in mode 0.

First, the reference basis (X0,Y0,Z0) used to plot the instrument results (as e.g. angular velocity distribution
functions, see paragraph 3.2.3.4) is determined by the user, defining two vectors “Vect1” and “Vect2” with
the instrument mandatory parameters “instrument_OutputBasisVect”. The vector coordinates are defined in
the GMSH basis used by SPIS for the CAD models:

- Vect1 is used as X0,
- Vect2 as Y0
- Z0 is automatically deduced from X0 and Y0 to form an orthogonal direct basis

A basis common to several detectors may be the simplest way to compare the distribution function from
different populations, different locations or different detection surfaces of a same real detector.

The detector orientation is defined by two rotations in this reference basis. The detector local basis
(Xd,Yd,Zd) is determined by the user through 2 rotation angles (see next figure):

- Rotation of d around Z0 to obtain the intermediary basis (X’, Y’, Z’=Zo)
- Rotation of d around Y' to obtain the final local basis (Xd, Yd=Y’, Zd)

By convention, Zd is a vector normal to the detector surface pointing inside the detector surface.

TR 6/17826 DESP -46-

JUNE 2013
UNCLASSIFIED

Figure 16 – Definition of the detector orientation

The detector acceptance angles (instrument_AcceptanceAngle_Alpha) and
(instrument_AcceptanceAngle_Beta) are defined by the user in the detector basis (Xd,Yd,Zd).

- around Zd in the plane (Xd, Zd)
- around Zd in the plane (Yd, Zd)

Figure 17 – Definition of acceptance angles

In the next figure, an example of SWA detector configuration is shown. As we can see, the vector Zd is well
oriented in the inner direction of the detector.

Figure 18 - Example of basis and acceptance angle definition for a SWA detector elementary surface

MCP

2

Selection in angle 1

Xo

Zo

Zd

Xd

MCP

Selection in angle 2

x0

y0

Zd

Yd

Detector #2

2

2

Detector #1

V.Yd

V.Zd
V.Xd

V.Zd

Xo

Yo

Z’=Zo

d

X’

Y’

Z’

X’

Yd=Y’

d

Zd

Xd

TR 6/17826 DESP -47-

JUNE 2013
UNCLASSIFIED

3.2.3.3. Measurement method
 The backtracking technique is based on the Liouville’s theorem that states the distribution function
value is constant along a particle trajectory.
 An exact calculation of the distribution function on the detector implies to compute an infinity of
trajectories to cover all the velocity space. Here, we discretize the velocity space on the detector into
Cartesian velocity volume elements of volume dvx.dvy.dvz. A velocity volume element is a slab between
(vx,vy,vz) and (vx+dx,vy+dvy,vz+dz). In each slab, the value of the distribution function is unique. In some
other backtracking codes, the value of the distribution function is computed at the center of the element. The
test particle has an initial velocity of (vx+dvx/2, vy+dvy/2, vz+dvz/2). Or it could be computed at the corner
of the volume element. These methods are quite efficient for very regular distribution functions but fail in
the general cases. For example, this determinist method fails when there is a strong selection in energy by
the detector. In SPIS, a Monte Carlo technique is preferred.
 In each slab, a certain number of test particles is created (defined by the user – in the order of 10).
For each test particles an initial velocity is randomly sorted between (vx,vy,vz) and (vx+dx,vy+dvy,vz+dz).
The value of the distribution function in the elementary volume results from an average of the distribution
function computed for all the test trajectories (existing and not existing). For each trajectory:

- If the trajectory does not exist, the value of the distribution function is zero. An example of non-
existing trajectory is when an environment particle is backtracked from the detector to a spacecraft
surface. A second example of non-existing trajectory is when a secondary electron is backtracked
from the detector to the external environment boundary.

- If the trajectory exists, the initial value of the distribution function is computed and applied to the
velocity distribution function on the detector surface.

Figure 19 – Backtracking principle from a detector

 The backtracking algorithm quality is based essentially on the discretization quality of the velocity
space. But most of the time the user can not estimate an accurate range for particle velocity detection, thus
the velocity domain to backtrack is very large. Performing an a priori discretization would imply to know
approximately the distribution function results, which is not generally the case. The chosen solution is to use
an adaptative meshing of the velocity space volume.
 In order to adapt the mesh in course of the backtracking, an OcTree technique is used to store the
value of the distribution function. The principle of the OcTree algorithm is to start with a single slab

Simulation box boundary

S/C

S/C

Sheath

TR 6/17826 DESP -48-

JUNE 2013
UNCLASSIFIED

representing the whole velocity space volume and then to successively split in eight sub-volumes (length
divided by two in the three directions) the volumes you want to refine. This algorithm is represented in the
next figure. It is in fact a dichotomy algorithm for mesh splitting. Thus the convergence is very fast, in 2N in
each direction with N the number of splitting. In 20 iterations, the precision of discretization in one direction
can be dvx/106!

Figure 20 – OcTree architecture and the corresponding distribution function discretization in the velocity space

 The next step of the algorithm is the selection of volume elements which are interesting to split. An
heuristic of optimization is used. This heuristic is based on the fact that two kinds of volume elements are
very interesting to improve:

- Volume elements in which the distribution function value are the highest. In these elements, it is
always interesting to increase the precision because it automatically leads to a better estimation of the
distribution function moments.

- Elements in which the test particle method computes very different distribution function values. As
the value is an average, it is interesting to split this volume to exactly compute for example the exact
position of a distribution function gradient. Conversely, when all the test particles lead to the same
value of the distribution function, it is reasonable to think that there is no need to refine this volume
even if the value of the distribution function is the highest.

- Elements which have neighbors with a greater splitting level. It permits to propagate splitting
refinement to neighbors and results in more homogeneous meshes through a diffusion mechanism.

Zoom 1000X

X Y

Z

Vy

Vz

TR 6/17826 DESP -49-

JUNE 2013
UNCLASSIFIED

Figure 21 – Optimization heuristic for the distribution function discretization

3.2.3.4. Outputs
 After each measurement, a ParticleMeasurementResult output is collected and presented to the user
at UI level in the instrument wizard. This is done by methods giving access to:

o Distribution function as a function of the energy. It is performed at detection on the instrument and at
injection (on the external boundary for ambient populations and on the spacecraft for secondaries)

o Differential flux as a function of the energy (at detection on instrument)
o Slice of the distribution function at a given energy as a function of elevation (phi) and azimuth (theta)

angles defined in the OutBasis referential frame (defined at detection and injection).
o Slice of the differential flux at a given energy as a function of elevation (phi) and azimuth (theta)

angles defined in the OutBasis referential frame (defined at detection).
o Spectrogram of the energy distribution function vs. time (at detection and injection)
o Spectrogram of the differential flux as a function of the energy vs. time (at detection)

In addition, 2D Data Fields (current density at detection and injection) are generated.

When the parameter "instrumentOutputLevel" is 1, additional ASCII files are created in the
NumKernel/Output/ repository:

Define a velocity
calculation domain

Init the OcTree using
the pl of the pusher

Vx

Vz

Vy

Vz

Inject a list of
Part. (Nbr part/OT)

Backtrack the part.

List of part with
provenance info

Update and refine
Interesting zones

Outputs Vx

Vz

Vy

Vz

TR 6/17826 DESP -50-

JUNE 2013
UNCLASSIFIED

- "spis.Util.Instrument.ParticleDetector1_Moment_at_XXXXs.txt" presents the different values of the
first three moments associated to the distribution function on the detector, the flux distribution
function and the distribution function at the particle source (environment or spacecraft).

- "spis.Util.Instrument.ParticleDetector1_Differential_Flux_and_Energy_at_XXXXs.txt" presents the
distribution of flux, the distribution of energy and the initial distribution of energy as a function of
energy.

- "spis.Util.Instrument.ParticleDetector1_Total_Current_Collection.txt" is the value of the total current
on the detector as a function of time (one value by measurement).

- "spis.Util.Instrument.ParticleDetector1_2D_DifferentialFlux_at_t=XXXXs.txt" presents the 3D
tabulated values of the flux distribution function on the detector in the output frame (Cartesian
coordinate vx,vy,vz).

- "spis.Util.Instrument.ParticleDetector1_2D_Angular_DifferentialFlux_at_t=XXXXs.txt" presents the
3D tabulated values of the flux distribution function on the detector in the output frame (spherical
coordinate E, theta, phi).

- "spis.Util.Instrument.ParticleDetector1_Velocity2DF_at_t=XXXXs.txt" presents the 3D tabulated
values of the velocity distribution function on the detector in the output frame (Cartesian coordinate
vx,vy,vz).

- "spis.Util.Instrument.ParticleDetector1_Angular2DF_at_t=XXXXs.txt" presents the 3D tabulated
values of the velocity distribution function on the detector in the output frame (spherical coordinate
E, theta, phi).

- "spis.Util.Instrument.ParticleDetector1_InitialVelocity2DF_at_t=XXXXs.txt" presents the 3D
tabulated values of the velocity distribution function on the surface source of particles in the output
frame (Cartesian coordinate vx,vy,vz).

- "spis.Util.Instrument.ParticleDetector1_Initial_Angular2DF_at_t=XXXXs.txt" presents the 3D
tabulated values of the velocity distribution function on the surface source of particles in the output
frame (spherical coordinate E, theta, phi).

- "spis.Util.Instrument.ParticleDetector1_3V_Distribution_Function_at_t=XXXXs.msh" is the 3V
distribution function on the detector in the OcTree form in the GMS frame (readable in GMSH).

- "spis.Util.Instrument.ParticleDetector1_3V_Differential_Flux_at_t=XXXXs.msh" is the 3V
differential flux on the detector in the OcTree form in the GMS frame (readable in GMSH).

- "spis.Util.Instrument.ParticleDetector1_3V_Initial_Distribution_Function_at_t=XXXXs.msh" is the
3V distribution function on the surface source of particles in the OcTree form in the GMS frame
(readable in GMSH).

- "spis.Util.Instrument.ParticleDetector1_Particle_List_at_t=XXXXs.msh" is the list of detected
particle on the detector in the output frame. There is one line per particles with successively the
position on the detector (xD,yD,zD), the velocity on the detector (vxD,vyD,vzD), the flux weight of
the particle on the detector (wFD), the position on the particle source (xE,yE,zE), the velocity on the
particle source (vxE,vyE,vzE), the flux weight of the particle on the particle source (wFE) and the
statistical weight of the particle in volume (w) which is conserved in Liouville theorem.

- map of current on the detectors in mode 1 and where the current is coming from.

Angular distributions f(,) calculated by SPIS are then given in the reference basis (Xo,Yo,Zo) by defining
the velocity vectors in polar coordinates (Vr, ,) as defined in Figure 22:

 Rotation of around Zo axis

 Rotation of around modified Yo axis according to next figure.

TR 6/17826 DESP -51-

JUNE 2013
UNCLASSIFIED

Vr

X0

Y0

Z0

Figure 22 - Definition of velocity polar coordinates (Vr, ,) in the reference basis (Xo,Yo,Zo)

3.2.3.5. User interactive mode
 The objective was to propose the user to validate the results and resume the simulation after a
measurement or to change the instrument parameters for a new TP run. An instrument listener has been
added to the instrument. It notifies UI whenever a measurement has been performed. The user can choose to
resume the simulation or re-start the TP AFTER updating the parameters. In case of a new TP run, previous
results obtained on current measurement are replaced.

TR 6/17826 DESP -52-

JUNE 2013
UNCLASSIFIED

3.2.4. Langmuir Probes

 The Langmuir Probe design is based on the same principle as Particle Detectors. More precisely, a
Langmuir Probe is a particle detector which measures a particle current (mode 1) combined with a voltage
sweep applied detector surfaces (through a dedicated transition class).

3.2.4.1. Input parameters

Figure 23 - Mandatory parameter for Langmuir Probes

 As the LP is based on a Particle Detector, all the mandatory parameters of a Particle Detector are
needed. It can be noted that the calculation mode is not force to 1 but it is recommended to use the LP in this
mode ("instrument_Mode" parameter).

 Additional parameters are also needed in order to configure the voltage sweep Transition.

 The "instrumentSamplingPeriod" parameter still defines the period of occurrence of a sequence of
measurement. In the case of a LP, this period is the duration between two sequences of measurements and
V-sweeps. It is hence possible to perform several V-sweep along the simulation, each V-sweep being
associated to electrical current measurements.

TR 6/17826 DESP -53-

JUNE 2013
UNCLASSIFIED

 The "instrument_DelayBetweenSteps" parameter defines the delay between two V sweep steps inside
each V-sweep sequence. It is the responsibility of the user to insure that there is a sufficient time to perform
a complete IV sweep during one sampling period:

"instrumentSamplingPeriod" > "instrument_DelayBetweenSteps" x ("instrument_NbrOfSteps" + 1)

 The detector potentials range is defined with the parameters "instrument_InitialBias" and
"instrument_FinalBias". The number of potential steps is defined by "instrument_NbrOfSteps".

 When "instrument_ReferenceElecNode" is set to -1, the LP is in "Ground Mode". The potential of the
electrical node corresponding to the parameter "instrument_ElecNode" is changed following the IV sweep.
The bias is applied in comparison to the ground at infinite (0 V).
 When "instrument_ReferenceElecNode" is set to a positive value corresponding to an existing
electrical node of reference, the LP is in "Floating Mode". The potential of the electrical node defined in the
parameter "instrument_ElecNode" is changed following the IV sweep, with respect to the potential the
reference electrical node.

3.2.4.2. Measurements
 The transition associated with each LP controls the potential sweep applied on the selected electrical
node. The particle measurement is done after a delay of stabilization of the simulation between two steps
(i.e. "instrument_DelayBetweenSteps").
 First, the measurement of the current at a fixed potential is a standard output of the particle detector.
The user can use the particle detector in mode 0 or mode 1. All the standard results after a particle detector
measurement are provided to the user. In addition, the current-voltage sweep is built by concatenation of
current measurement at each step. ASCII files are provided for each LP and for each measurement sequence
of a LP as e.g. “Langmuir probe id2_IVcurve_Seq1".

NB: The LP was created to cover two different situations:

Situation 1: Not floating spacecraft
- the circuit integration shall not be activated (no floating potential)
- no circuit file shall be defined
- the simulation time step shall be fixed (simulationDt < 0)
- The initial potential shall be defined through globalParameters or localParameters
- the LP sweep shall be defined between the infinity -1 and the LP node

Situation 2: LP on a floating spacecraft
- the circuit integration shall be activated (the potentials are floating)
- a circuit file shall be defined
- the simulation time shall be automatic (simulationDt >= 0)
- the LP sweep shall be defined between two node => the node n1 and the LP node n2
- Warning the circuit file and the LP can potentially have a concurrent access on the same SC

circuit components, which is prohibited As a consequence and example, fixing a potential
between node 0 and node 1 and between node 1 and node 2, excludes the possibility to define an
IV sweep between node 0 and node 2.

3.2.4.3. User interactive mode
A limited interactive mode is permitted for LP. Only parameters defining the test particle method can be
changed (no change of the V-sweep characteristics).

TR 6/17826 DESP -54-

JUNE 2013
UNCLASSIFIED

3.2.5. Virtual Particle Detectors

 The Virtual Particle Detector (VPD) aims at measuring particle fluxes on virtual surfaces immersed
in the computational domain without connection to the boundaries (i.e S/C surface nor external bound). In
comparison to the ParticleDetector class, the VirtualParticleDetector class (VPD) needs a new attribute: a
separated surface mesh, here after called Virtual Surface Mesh (VSM).

 The VSM is defined at SPIS-UI level and meshed independently. It is composed of 2D triangular
mesh elements. Each VSM represents a possible support of VPD and each support can hold several VPD.
The VSM and virtual supports are defined and passed to the SPIS-NUM simulation instance before the
beginning of the simulation and VSM cannot be loaded within the course of the simulation

 SPIS-NUM computes the correspondence between the VSM nodes and the tetrahedra composing the
simulation volume mesh. The VSM nodes shall be inside the volume mesh domain.

Figure 24 - Schematical description of a virtual particle detector mesh

TR 6/17826 DESP -55-

JUNE 2013
UNCLASSIFIED

3.2.5.1. Input parameters

Figure 25 - Mandatory parameter for a Virtual Particle Detector

The same parameters used for particle detectors are used for VPD.

3.2.5.2. Measurements method
 As compared to a particle detector, the only specificity of a VPD is its meshed surface. All the
surface distribution functions and all the particle pusher methods have been adapted to VSM.

 The trickiest point concerned the injection of test particles in the computational volume. A specific
position sampler has been developed to make a connection between the VSM and the calculation volume
mesh. To preserve SPIS solvers efficiency, a bufferized position sampler of test particles aims at keeping in
memory the link between each virtual surface mesh elements and its neighbors in the volume mesh. This is
an important step since injection is performed very often.

TR 6/17826 DESP -56-

JUNE 2013
UNCLASSIFIED

3.2.5.3. User interactive mode
 Same as a Particle detector.

3.2.6. Plasma Sensors

 The purpose of the PlasmaSensor class (PS) is to measure all requested physical fields (e.g. density,
potential) mapped on the volume computational grid. This measurement is dynamically printed to the screen
in the form of time series. This has both scientific and numerical purposes (informing on the simulation
convergence). As of today, only basic domains are permitted (point, sphere, lines).

 The control of the interaction between the PS and the simulation is described at UI, NUM and user
level in Figure 26. During the simulation, NUM delivers regular notifications to the PS instrument, which
performs measurement when pre-defined observation times are reached. UI plots them on the screen. On
user demand, UI can update the parameters of the PS. Also a measurement can be performed on user
demand.

Modify PS 1

Integrate Integrate

Plasma Sensor 1

Plasma Sensor 2

Instrument-PS
Level

Spis NUM
Level

SPIS UI
Level

User interactions

Regular delivery of outputs

Num to PS delivery of outputs

Signal to update PS properties at Num level

UI Results plotting

Demand of VPS modification from the user

Time along the simulation

Dynamical results update

Modify PS 2

Integrate

Dynamical results update

position position

Dynamical results update

Figure 26 - Control of the simulation and virtual plasma sensor observations at user, UI and NUM levels

TR 6/17826 DESP -57-

JUNE 2013
UNCLASSIFIED

The full list of available plasma sensors is summarized in the next tables.

Table 1 - List of plasma sensors sub types

TR 6/17826 DESP -58-

JUNE 2013
UNCLASSIFIED

Table 2 - Input parameters for plasma sensors

Instrument
Type

Quantity Result
Type

Position Sampling
Period

Sampling
Duration

Pop. Radius Emin Emax Nb of E
intervals

OutBasis ESN
Id

PotentialPS Potential DimScal X X X
DensityPS pop

density
DimScal X X X X

EnergyDistFuncPS Kinetic
energy
histogram

ParticleMeasurementResult X X X X X X X X

TotalEnergyDistFuncPS Total
energy
histogram

ParticleMeasurementResult X X X X X X X X

KineticEnergyPS Mean
Kinetic
energy

DimScal X X X X X

VelocityDistFunctionPS 3D
velocity
DF

ParticleMeasurementResult X X X X X X X X X

SurfaceFluxDistFunctionPS ParticleMeasurementResult X X X X X X X X X
TotalEnergyPS Total pop

energy in
domain

DimScal X X X

TotalSuperParticlePS Total nb
pop super
particles

DimScal X X X

AvSCPotentialMonitor Mean SC
potential

DimScal X X

TR 6/17826 DESP -59-

JUNE 2013
UNCLASSIFIED

ESNCurrentMonitor Total
current
on ESN

DimScal X X X

ESNIndividualCurrentMoni
tor

Detailed
currents

DimScal X X X

ESNPotentialMonitor Potential
of ESN

DimScal X X X

ESNPotentialDifferenceMo
nitor

Diff pot
vs local
ground

DimScal X X X

ESNPotentialVariationMon
itor

dV/dt of
ESN

DimScal X X X

Remarks:

o VelocityDistFunctionPS is the 3V distribution function defined in the referential frame OutBasis
o SurfaceFluxDistFunctionPS is the 3V differential flux of a population passing through an oriented (normal in OutBasis

first vector) disk of radius Radius

TR 6/17826 DESP -60-

JUNE 2013
UNCLASSIFIED

3.3. Semi-transparent grids

 From [SRD], semi-transparent grids (STG) are thin spacecraft surfaces bounded by two plasma
volumes. They collect only a fraction of particles passing through them. They can emit secondary particles
(from electron, proton and photon impact).

3.3.1. CAD modeling

At UI level, a STG is characterized by:
 The classical plasma volume mesh hereafter called volMesh (possibly a combination of several

volume meshes) with the following extra information under the form of DataFields:
o Flags on surface mesh elements of volMesh belonging to a STG: surface flag indicating this is

a STG:
 Flag of the STG
 Id of the STG,
 transparency coefficient normalized between 0 and 1,

o For each surface mesh element of volMesh belonging to a STG, the correspondence with the
index of the surface elements in the two side surface mesh of the STG (i.e couple of indexes);

 An additional surface mesh
o This surface mesh is composed of two sides,
o Side A is the duplicate of face B but with surface meshes oriented in the opposite direction
o Side A et side B are concatenated in order to form a single surface mesh

 A single surface mesh grid is defined for all the STG

 The surface meshes are passed from SPIS-UI to SPIS-NUM, as the legacy volume and surface
meshes.

TR 6/17826 DESP -61-

JUNE 2013
UNCLASSIFIED

Figure 27 - Example of Cad modelling of a STG inside the computational domain

Figure 28 - Design of the surface meshes associated to a STG

TR 6/17826 DESP -62-

JUNE 2013
UNCLASSIFIED

3.3.2. Inputs

Figure 29 – STG definition in the group editor

 For each STG, the user should select in the Group editor:
- The grid transparency
- The electric super node linked to the grid
- The grid potential if the grid is not linked to the SC circuit
- The material of the grid (only metal permitted)
- The mesh model of STG (only one model available)

 There are no specific global parameters for semi-transparent grids. All the GP defined for spacecraft
interaction with the plasma also apply to STGs.

3.3.3. Particle pusher

 The grid transparency is taken into account by all particle volume distributions (PIC, Backtracking
and Composite). A particle reaching the grid has a probability to pass through the STG corresponding to the
transparency. The transparency is treated statistically. When a particle is collected, the particle is added to
the surface distribution function living on the STG. When a particle is not collected, the particle continues its
trajectory without any modification.

TR 6/17826 DESP -63-

JUNE 2013
UNCLASSIFIED

 SPIS solvers make the difference between the particles collected on the face A and on the face B. It
ensures a correct computation of secondary populations on the both sides of the STG (especially in the case
of photoemission where the collected population is photon and the emission is present only on one face of
the grid).
NB: The transparency is also taken into account for photons: transparency shading effect of photoemission is
modelled.

 The emission of secondary populations is activated with the same flag as on the SC. A STG can
support: photoemission, secondary emission by electron impact, secondary emission by proton impact and
hoping effect.

3.3.4. Results monitoring

 The visualization of the results is performed on both sides of a STG. The 3D outputs (i.e. color
mapping) being done MeshGroup by MeshGroup, it is possible to visualize on both or only one side of the
STG by selection of the relevant MeshGroup. Because a mesh is defined for each STG, each STG can be
visualize independently. In both cases, the selection of the data displayed is done by selection of the relevant
DataField in the Data Miner.

3.3.5. Graphical User Interface

 The User Interfaces elements dedicated to STG are similar to the Instruments ones. The geometry of
STG is defined through the CAD tool (i.e Gmsh). The surface of the STG should be defined as a surface
limiting two volumes constituting the computational volume, like 2D thin elements. As for 2D thin elements,
a MeshGroup is generated for each face.

 The responsibility of STG geometry consistency and of the respective attribution of faces (A and B)
is let to the user. The designation of each face is done by selection of the respective MeshGroup through the
Groups Manager.

 The generation of the additional meshes will be done by the extraction of the corresponding surface
mesh elements (as indicated by the STG flag) using the features of the Penelope library.

3.4. Generic distribution functions

 A new set of velocity distribution functions has been developed to increase the code capabilities,
which previously supported only Maxwellian distributions for ambient particles (possibly drifting for ions).
Distribution functions (DF) of PIC populations are passed or transformed internally in tabulated DF. The
most general case is a DF defined versus three velocity components, basically in a Cartesian coordinates
system, but also possibly in polar coordinates.

TR 6/17826 DESP -64-

JUNE 2013
UNCLASSIFIED

 All the distribution functions extending DistributionFunction are possible to use when invoking a
PICVolDistrib population, simply by setting its name in the global parameter popNEnvironmentDF. In the
following table, the list of global parameters needed to define an extended population is represented. This
list contains an adaptation of all the parameters needed to buid a biMaxwellianEnvironment as the density
for exemple popNDensity. But at the difference of the biMaxwellianEnvironment population, the secondary
emission flag is externalized pop1SEEFlag.
 Some additional parameters are also needed depending on the class of the distribution function. For
example, a file path has to be defined in the case of an IsotropicTabulatedDistributionFunction.

Name Description Variab
le type

Unit Default value In use

pop1Distrib Name od the distribution function String [-] PICVolDistrib yes

pop1Type Particle type of the population String [-] None yes

pop1Density Density of particles at the infinity Float [m-3] All yes

pop1Dt Integration time step float [s] 0,0 yes

pop1Duration Integration duration float [s] 0,0 Yes

pop1TrajFlag Trajectory flag Int [-] 0 yes

pop1SpeedUp Population speed up Float [-] 0 yes

pop1Environme
ntDF

Name of the distribution function to be injected String [-] TabulatedDistributio
nFunction

yes

pop1DF_FileNa
me

File path in case of a tabulated DF String [-] test1DFmode1_exe
mple1.txt

yes

pop1SEEFlag Secondary electron emission flag by electron
impact

Int [-] 0 yes

Name Description Variab
le type

Unit Default value In use

pop1Distrib Name od the distribution function String [-] PICVolDistrib yes

pop1Type Particle type of the population String [-] None yes

pop1Density Density of particles at the infinity Float [m-3] All yes

pop1Dt Integration time step float [s] 0,0 yes

pop1Duration Integration duration float [s] 0,0 Yes

pop1TrajFlag Trajectory flag Int [-] 0 yes

pop1SpeedUp Population speed up Float [-] 0 yes

pop1Environme
ntDF

Name of the distribution function to be injected String [-] TabulatedDistributio
nFunction

yes

pop1DF_FileNa
me

File path in case of a tabulated DF String [-] test1DFmode1_exe
mple1.txt

yes

pop1SEEFlag Secondary electron emission flag by electron
impact

Int [-] 0 yes

TR 6/17826 DESP -65-

JUNE 2013
UNCLASSIFIED

3.4.1. Generic user defined distribution function

 The user defined distribution functions are concerned by two new classes. The user defined
distributions are defined by tabulated files. Three different file formats are available: two of them concern
the definition of a full 3V distribution function without constraints; the last one permits to define an isotropic
DF.

 Mode 1 permits to define the DF in a rectangular and structured mesh. In the following example, the
user first defines the three scales (X, Y, Z) corresponding to (vx, vy, vz). Then, the value of the DF is
defined by a 2D matrix with values corresponding to each step in the X scale.

TR 6/17826 DESP -66-

JUNE 2013
UNCLASSIFIED

 TabulatedDistributionFunction (mode 1)
X tab (table of X values)
-200000.0
-100000.0
0.0
200000.0
400000.0
Y tab (table of Y values)
-5.0e+4
-2.5e+4
-1.0e+4
0.0
1.0e+4
1.5e+5
3.0e+5
Z tab (table of Z values)
-8e+4
-4e+4
0.0
1.0e+5
1.5e+5
X = -2000.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
X = -1000.0
0.0 0.0 0.0 0.0 0.0
0.0 0.9 0.9 0.9 0.0
0.0 0.9 0.9 0.9 0.0
0.0 0.9 0.9 0.9 0.0
0.0 0.9 0.9 0.9 0.0
0.0 0.9 0.9 0.9 0.0
0.0 0.0 0.0 0.0 0.0
X = 0.0
…

 The most general way to define a 3V distribution function is however adopted in mode 2, see next
table. The DF is described in an unstructured mesh of the phase space. Each element of the mesh is a slab
with origin (vx, vy, vz) and dimensions (dvx, dvy, dvz). In each element, the distribution is trilinear. The
user must define the value f at the origin and the slopes of f (df/dvx, df/dvy, df/dvz) within the slab. This
second mode is more general but the meshing is let to the user’s responsibility. It can be noted that where the
DF is not defined, its value is zero (no extrapolation performed).

TR 6/17826 DESP -67-

JUNE 2013
UNCLASSIFIED

 IsotropicTabulatedDistributionFunction (mode 2)
vx vy vy f dvx dvy dvz df/dvx df/dvy

df/dvz
-100.0 -10.0 -10.0 1.0 90.0 10.0 10.0 0.0 0.0 0.0
-100.0 -10.0 10.0 1.0 90.0 10.0 -10.0 0.0 0.0 0.0
-100.0 10.0 -10.0 1.0 90.0 -10.0 10.0 0.0 0.0 0.0
-100.0 10.0 10.0 1.0 90.0 -10.0 -10.0 0.0 0.0 0.0
-10.0 -10.0 -10.0 1.0 10.0 10.0 10.0 0.0 0.0 0.0
-10.0 -10.0 10.0 1.0 10.0 10.0 -10.0 0.0 0.0 0.0
-10.0 10.0 -10.0 1.0 10.0 -10.0 10.0 0.0 0.0 0.0
-10.0 10.0 10.0 1.0 10.0 -10.0 -10.0 0.0 0.0 0.0
0.0 -10.0 -10.0 1.0 2.0 10.0 10.0 0.0 0.0 0.0
0.0 -10.0 10.0 1.0 2.0 10.0 -10.0 0.0 0.0 0.0
0.0 10.0 -10.0 1.0 2.0 -10.0 10.0 0.0 0.0 0.0
0.0 10.0 10.0 1.0 2.0 -10.0 -10.0 0.0 0.0 0.0
2.0 -10.0 -10.0 1.0 10.0 10.0 10.0 0.0 0.0 0.0
2.0 -10.0 10.0 1.0 10.0 10.0 -10.0 0.0 0.0 0.0
2.0 10.0 -10.0 1.0 10.0 -10.0 10.0 0.0 0.0 0.0
2.0 10.0 10.0 1.0 10.0 -10.0 -10.0 0.0 0.0 0.0
…

Six global parameters define the basis on which the DF is calculated:

Name Description Variab
le type

Unit Default value In use

pop1DFBasis_
Vect1_X

X component of the vect1 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect1_Y

Y component of the vect1 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect1_Z

Z component of the vect1 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect2_X

X component of the vect2 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect2_Y

Y component of the vect2 defining the DF base Float [-] 1.0 Yes

pop1DFBasis_
Vect2_Z

Z component of the vect2 defining the DF base Float [-] 1.0 yes

Name Description Variab
le type

Unit Default value In use

pop1DFBasis_
Vect1_X

X component of the vect1 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect1_Y

Y component of the vect1 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect1_Z

Z component of the vect1 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect2_X

X component of the vect2 defining the DF base Float [-] 1.0 yes

pop1DFBasis_
Vect2_Y

Y component of the vect2 defining the DF base Float [-] 1.0 Yes

pop1DFBasis_
Vect2_Z

Z component of the vect2 defining the DF base Float [-] 1.0 yes

NB: After the importation of a user-defined tabulated file, a renormalisation of the distribution is performed,
in order to insure that the population density imposed by the user in the global parameters will be really
imposed in undisturbed plasma regions:

,v

zyxzyx_

zyx_
zyx

dvdvdvv,v,v

v,v,v
v,v,v

filefrom

filefrom

f

f
f

 This class ant its extensions provide sampling methods for velocity. Three different methods of
sampling are implemented:

- An acceptance rejection method
- A numerical inversion method
- A direct weight mode

TR 6/17826 DESP -68-

JUNE 2013
UNCLASSIFIED

 The aim of all these methods is to provide a set of (vx,vy,vz,w) following a user defined distribution
function. The most efficient in the case of a tabulated function is the numerical inversion method. It is based
on the fact that the distribution function is already discretized in the phase space. For each phase space
element i, located at coordinates (vx,vy,vz), we have:

 zyx v,v,vff i

zyx dvdvvv dd i

 A mesh element n of the phase space is then randomly chosen following the relation:

Rdf
n

i
ii

0

v

with R a random number.
 In the cell n, the final velocity of the particle is randomly sampled between (vx,vy,vz) and
(vx+dvx,vy+dvy,vz+dvz). The weight of the particle is uniform in on cell of the space meshing. It is
deduced from the number of particle in the cell and the density in this cell. If the sampling is done in
surface, the same process is used with a surface distribution function:

 vnvv

surfsurf ff

3.4.2. Isotropic user defined distribution function

 The IsotropicTabulatedDistributionFunction extends the TabulatedDistributionFunction class. It is
not needed to provide a 3V tabulated distribution function. The user must only tabulate the distribution
function as a function of the norm of the distribution function fn(v).

 dddvcosvvdvdvdvv,v,v 2
zyxzyx nff

A linear interpolation is done between each point of the tabulated distribution function of the velocity norm.

v f(v)
1.000000E+01 5.210000E-01
1.200000E+01 5.210000E-01
1.440000E+01 5.210000E-01
1.728000E+01 5.210000E-01
2.073600E+01 5.210000E-01
2.488320E+01 5.210000E-01
2.985984E+01 5.210000E-01
3.583181E+01 5.210000E-01
4.299817E+01 5.210000E-01
5.159780E+01 5.210000E-01
6.191736E+01 5.210000E-01
7.430084E+01 5.210000E-01
8.916100E+01 5.210000E-01
1.069932E+02 5.210000E-01
1.283918E+02 5.210000E-01
1.540702E+02 5.210000E-01
1.848843E+02 5.210000E-01
2.218611E+02 5.210000E-01
2.662333E+02 5.210000E-01
…

TR 6/17826 DESP -69-

JUNE 2013
UNCLASSIFIED

3.4.3. Bi-Maxwellian distribution function

 This extended population is selected through the GP pop#EnvironmentDF parameters for
environment plasma populations (and by the corresponding GP for photoelectrons) by typing directly
"IsotropicBiMaxwellianDF"

3.4.4. Kappa distribution function

An isotropic Kappa distribution function has been implemented following:

 2121

1

2

2

23323

//32

1
21

11

mkT

vN
vf

 The IsotropicKappaDF1 extends the IsotropicTabulatedDistributionFunction. An automatic
tabulation of this Kappa function is performed. The methods of the parent class
IsotropicTabulatedDistributionFunction permit to sample the particles. For backtracking methods, the
returned value of the DF comes from the analytic equation and not from the tabulated ones.

3.4.5. Application of a drift velocity

 Adding a drifting velocity is possible for all user-defined distribution functions. This function of the
TabulatedDistributionFunction class makes a drift in the distribution function without performing again the
DF tabulation.

 driftz,zdrifty,ydriftx,x0zyx v-v,v-v,v-vv,v,v ff

Name Description Variab
le type

Unit Default
value

In use

pop1Temperatu
re1

Population first temperature Float [eV] 1.0 yes

pop1Temperatu
re2

Population second temperature Float [eV] 1.0 yes

pop1RatioN1ov
erN2

Ratio between the density of the bi-maxwellian
population

Float [-] 1.0 yes (if
pop1RatioJ1over
J2 not set)

pop1RatioJ1ov
erJ2

Ratio between the current density of the bi-
maxwellian population

Float [-] 1.0 yes

Name Description Variab
le type

Unit Default
value

In use

pop1Temperatu
re1

Population first temperature Float [eV] 1.0 yes

pop1Temperatu
re2

Population second temperature Float [eV] 1.0 yes

pop1RatioN1ov
erN2

Ratio between the density of the bi-maxwellian
population

Float [-] 1.0 yes (if
pop1RatioJ1over
J2 not set)

pop1RatioJ1ov
erJ2

Ratio between the current density of the bi-
maxwellian population

Float [-] 1.0 yes

TR 6/17826 DESP -70-

JUNE 2013
UNCLASSIFIED

3.5. Surface interactions update

3.5.1. Extended material properties

We remind that the Properties and Groups Editor of SPIS is based on the Frida library. In this one,
Properties (e.g. material) are structured in a tree and hierarchized structure. Each Property gather a set of
Characteristics, these ones being of various types like scalars (i.e. float, double or int), Strings, objects or
series double values. In Series Characteristics, several series of values can be defined.

Series Characteristics allows SPIS to attribute rich properties with tabulated values (e.g. tabulated secondary
emission function versus energy) to groups. Example of rich Properties and tabulated are provided with tests
projects of the present study. To create new Properties, several approaches are possible. New properties files
can be edited manually as all XML file. However, the simplest one is to use the advanced editor in the
selection tree Properties and Groups Editor as follow:

1. Select the group to which one the Property should be attributed to;
2. On the selected group, access to the contextual menu with a right-button click, add a new Property.
3. Select the newly created property and add, in the same way, a new Characteristics of type Series, as

illustrated in Figure 30.

Figure 30: Creation of a new Characteristic of type series of double.

4. Set the number of series (i.e. number of columns) and the size of the series (i.e. number of values by
series);

5. Click in the Edit button to set the values of series. An editor should appear as illustrated in Figure 31.

TR 6/17826 DESP -71-

JUNE 2013
UNCLASSIFIED

Figure 31: Editor of Series Characteristics. Here two series of four values each are defined. Labels and units can be defined for

each series.

6. By clicking on the plot button, series can be displayed as illustrated in Figure 32.

Figure 32: Example of tabulated characteristics.

7. After a complete setting of the Property and its related Characteristics, select the built Properties,
with the right-click button, access to the contextual module and select the “Save this property” item,
as illustrated in Figure 33.

Figure 33: Contextual menu to save the selected Property.

We recommend to same all selected Property into a directory with an “.xcat” extension (should be
created manually before) to constitute a new catalogue. Such directory can then be loaded as usual.

TR 6/17826 DESP -72-

JUNE 2013
UNCLASSIFIED

<Property>
 <id>99</id>
 <name>exampleOfRichProperty</name>
 <description>another property</description>
 <characteristicList>
 <entry>
 <string>aTabulatedCharacteristic</string>
 <SeriesOfDoubleCharacteristic>
 <id>-1</id>
 <name>aTabulatedCharacteristic</name>
 <parentProperty class="Property" reference="../../../.."/>
 <unit class="SimpleStringUnit">
 <unit>[m]</unit>
 <standardUnit>m</standardUnit>
 </unit>
 <localisation>-1</localisation>
 <informationLink></informationLink>
 <value>
 <double-array>
 <double>0.0</double>
 <double>0.1</double>
 <double>0.2</double>
 <double>0.3</double>
 </double-array>
 <double-array>
 <double>0.0</double>
 <double>0.4</double>
 <double>0.5</double>
 <double>0.2</double>
 </double-array>
 <double-array>
 <double>0.0</double>
 <double>0.1</double>
 <double>0.4</double>
 <double>0.05</double>
 </double-array>
 </value>
 <xSerie reference="../value/double-array"/>
 <seriesAbscissa>
 <null/>
 <double>1.0</double>
 <double>2.0</double>
 </seriesAbscissa>
 <ySeriesLabel>
 <string>no label</string>
 <string>Pe_flux</string>
 <string>snd_e_flux</string>
 </ySeriesLabel>

TR 6/17826 DESP -73-

JUNE 2013
UNCLASSIFIED

 <seriesUnit>
 <SimpleStringUnit>
 <unit>[]</unit>
 <standardUnit></standardUnit>
 </SimpleStringUnit>
 <SimpleStringUnit>
 <unit>[m-2*s-1]</unit>
 <standardUnit>m-2*s-1</standardUnit>
 </SimpleStringUnit>
 <SimpleStringUnit>
 <unit>[m-2*s-1]</unit>
 <standardUnit>m-2*s-1</standardUnit>
 </SimpleStringUnit>
 </seriesUnit>
 <size>4</size>
 </SeriesOfDoubleCharacteristic>
 </entry>
 </characteristicList>
 <isCompound>false</isCompound>
 <type></type>
</Property>

Table 3 - Example of saved rich Property with Series Characteristics.

3.5.2. Generic secondary populations

Three new classes have been developed in order to extend the possibilities for secondaries:
- For photoemission: the GenericPhotoEmInteractor extends the PhotoEmInteractor by permitting to

have generic distribution function instead of Maxwellian.
- For secondary emission by proton impact: the GenericSEEPInteractor extends the

BasicSEEPInteractor by permitting to have generic distribution function instead of Maxwellian for
emission.

- For secondary emission by electron impact: the GenericSEEEInteractor extends the
BasicSEEEInteractor by permitting to have generic distribution function instead of Maxwellian for
the true emission and a tabulated yield for true SEE and backscattered.

3.5.2.1. User defined yields
 SEEE yield can also be tuned with extended material properties of SPIS-5, through tabulated data.
The user can add new material properties to the material properties list, at group editor level. The flag
parameters permit to activate the tabulated yields instead of the legacy analytical models.

TR 6/17826 DESP -74-

JUNE 2013
UNCLASSIFIED

Name Description Variable

type
Unit Default

value
SEEEYFlag SEE by electron yield

dependence in energy
flag (0-analytical model /
1-tabulated mode)

Int [-] 0.0

SEEEYETab SEE by electron
dependence in energy tab

Array [eV,-] -

SEEEYTTab SEE by electron
dependence in angle tab

Array [rad,-] -

BCKEAFlag Backscattering of
electron albedo
dependence in energy
flag (0-analytical model /
1-tabulated mode)

Int [-] 0.0

BCKEAETab Backscattering of
electron albedo
dependence in energy tab

Array [eV,-] -

BCKEATTab Backscattering of
electron albedo
dependence in angle tab

Array [rad,-] -

TR 6/17826 DESP -75-

JUNE 2013
UNCLASSIFIED

Figure 34 -Example of tabulated SEEE yield as a function of impacting electron energy (absolute value) and incidence angle

(relative value)

3.5.2.2. User defined distribution function
 Secondary electrons from electron, proton and photon impact can be modelled with the isotropic
distribution functions defined in the previous section (no warrantee for 3V DF since the reference basis is
applied whatever the surface of injection). It behaves as extended populations for environment, the same
global parameters format is used.

3.5.3. Self-shading

 This development was performed in the frame of the SPIS-GEO contract. However, for the sake of
completeness, we present here its design.

 The photoemission process has been enhanced taking account of the spacecraft self-shading, i.e.
surfaces oriented towards the Sun but masked by other spacecraft surfaces. The numerical method is a ray
tracing technique (particles emitted from spacecraft and straight trajectory). The initialization of the
photoemission current backtracks a uniform velocity population, emitted in the direction of the Sun (see
initPhotoemission() of simulationFromUIParams). When a particle reaches the external boundary, it
contributes to the current emitted on the spacecraft surface element of origin. Otherwise, i.e. when

TR 6/17826 DESP -76-

JUNE 2013
UNCLASSIFIED

intercepted by other spacecraft elements, the particle is discarded. On the example of Figure 35, the
voluntarily large cylindrical antenna shades the spacecraft resulting in a reduced current density.

Figure 35 - Illustrations of spacecraft self-shading leading to a limitation or cancellation of the photoemission process on

partially or fully masked surfaces

3.5.4. Solar array interactor

 The development of "Solar arrays plasma interaction (SR-FGS-002)" of SPIS-SCI concerns the effect
of small metallic units set to high voltages, i.e. interconnectors of a solar array. It aims at modelling them not
at the length scale of the panel and not at the length scale of the interconnectors (not meshed). At this scale,
we can make the assumption that the solar array surfaces are dielectric surfaces through which a part of
current is collected directly by the ground, i.e. not by the dielectric surfaces of the solar cell. The electric
field is also disturbed at the vicinity of these highly biased small elements.
 The interconnector modelling is based on the next assumptions:

 The solar array mesh need not being adapted to the interconnects size
 The current collection on the solar array is calculated as a standard simulation, i.e. the plasma

is not globally affected by the interconnect
 Locally in each cell of the solar array, the current is distributed between the cover-glasses and

the interconnects
 The current distribution is affected by the potential of the interconnects behind the cover-

glasses (map defined by the user).

TR 6/17826 DESP -77-

JUNE 2013
UNCLASSIFIED

Figure 36- Schematic view of the interconnector modelling

3.5.4.1. How to define an interconnect in SPIS?

The SolarArrayInteractor must be defined in:

 GlobalParams:
 interactorNb = 1
 interactorParticleType1 = None
 interactorPopSource1 = All
 interactorType1 = SolarArrayInteractor

 LocalParams: Plasma model type spacecraft
 SourceId = 1001 (i.e. 1000 + InteractorId)

The description files must be created in Project -> NumKernel -> Input

 Interactor1_SolarArrayDescriptor.txt gives the potential map on the solar Array.
 Interactor1_SolarArrayCollectionRation.txt gives the current ratio collected by the interconnect as a

function of the relative reduce potential of the interconnect. This file is optional. If it is not present an
OML like law is used instead.

3.5.4.2. Solar array potential map
 The solar array potential map and geometry is defined in the first file named
“Interactor1_SolarArrayDescriptor.txt” for the Interactor1. This file is defined as follow:

 The first value corresponds to the geometric ratio of the interconnect (surface of interconnect/total
surface of the panel) -> range [0:1]

 NB: this ratio is only used with the OML approximation => not used if
Interactor1_SolarArrayCollectionRation.txt exists

 Basis definition:
 xM yM zM (coordinate of the M point in the SPIS geom ref)
 xX yX zX (MX vector definition)
 xY yY zY (MY vector definition)

0 V

100 V

0 V

10 V

+ +

Current to strings :

- proportional to the
ratio of interconnect
vs. coverglass

- OML model based
on local plasma
parameters

TR 6/17826 DESP -78-

JUNE 2013
UNCLASSIFIED

 Panel elements are built in the (M,MX,MY) base
 Definition of one rectangular zone of the panel by lines (see Figure 2):

 x0 y0 x1 y1 V0 dV/dx dV/dy
 For example for the first zone:
 0.0 0.0 4.0 0.2 0.0 25.0 0.0

Figure 37 - Definition of a solar array potential map by zones where the potential evolves linearly

3.5.4.3. Solar array collection law
 The ratio of current collection is defined as a function of the reduced differential potential and a
geometrical factor. The differential potential is defined as the difference between the potential at the
dielectric surface and the potential of the electrical node of the solar array. Then, the reduced differential
potential is the ratio between the differential potential and the particles energy in [eV]. When the current
ratio is defined in a file, both effects are supposed to be taken into account within the file. The user should
create a file named “Interactor1_SolarArrayCollectionRation.txt” where the probability for a particle with a
known energy is set as a function of the reduced potential.

0 V

100 V

0 V

10 V

M

X

Y(x0,y0)

(x1,y1)

(25 V/m)

TR 6/17826 DESP -79-

JUNE 2013
UNCLASSIFIED

File example:

When no file is defined, a cylindrical OML like law is used. The probability for a particle to be collected is:

 reduceddiff

reduceddiff

VRR

VR
proba

,

,

11

1

Where R is the geometric ratio (defined in Interactor1_SolarArrayDescriptor.txt) and Vdiff is the reduced
differential potential.

3.6. Thin wires

The main development concerning thin wires is was the current collection and the current emission from
these elements. These developments impacted a lot of existing classes concerning:

- the particle pusher
- the surface distribution function
- the surface interactors
- the spacecraft circuit

3.6.1. Particle pusher

The particle pusher has been modified to collect particles on a wire. A wire is represented by an unmeshed
cylinder around an edge of the mesh. In this case, the standard pusher (exact when E is uniform) is not used.
The crossTetraUniformEwithDichotomy permits to take into account the potential singularity around the
wire (see magnetic field section).

3.6.2. Surface distribution

 A major development concerns the fact that the surface distributions in the previous version of SPIS
were all located on surface elements. Now due to thin wires extension, a surface distribution can live both on
standard surface elements but also on edges defined as wires within the user interface.
 The development has consisted on defining a MultipleSurfDistrib class instead of SurfDistrib for all
collected and emitted currents. The MultipleSurfDistrib is composed of two SurfDistrib, by convention:

-1000.0 0.0
-10.0 0.0005
-1.0 0.01
0.0 0.01
1.0 0.01
10.0 0.1 (i.e: if the diff pot is 10V, the probability for the interco to collect an electron at
1eV is 10%)
100.0 0.2
1000.0 0.5

TR 6/17826 DESP -80-

JUNE 2013
UNCLASSIFIED

- The first is located on the SC surfaces surface elements of the SC mesh
- The second is located on the SC wires edge elements of the SC mesh

 This modification impact all VolDistrib classes and extensions (full list below). The source terms on
spacecraft surfaces are also compatible with MultipleSurfDistribs (needed for photo-electrons emission and
etc…). All the class working with the input flux or calculating the output flux of a VolDistrib have been
made compatible with MultipleSurfDistrib.

3.6.3. Surface interaction

 The surface interactors have also been made compatible with thin wires, by using
MultipleSurfDistrib as input and output (full list of interactors below).

TR 6/17826 DESP -81-

JUNE 2013
UNCLASSIFIED

 Concerning the secondary emission by proton and electron impact, a particular attention has been
paid to take account of the incidence angle of impacting populations on the wire for the calculation of the
yield. Knowing the position of the particle on the wire at the impact and knowing the wire position, the exact
incidence angle is calculated in SPIS.

3.6.4. Spacecraft circuit

 In the Spacecraft circuit, the current collected on wires and emitted from wires is passed using
different SurfField from the SurfField used for the currents on the SC. The current collected by the wires is
then mapped onto the SC circuit nodes elements and the circuit solver is used as usual with current on
electrical nodes (i.e. CircFields).
 As an output of the circuit solver, the potential on the electrical super nodes representing is mapped
to the edges of the computational volume mesh.

TR 6/17826 DESP -82-

JUNE 2013
UNCLASSIFIED

3.6.5. Monitoring

 The monitors of surface fields have been updated in order to plot the wire data on the edges.

Figure 38 – Plot of the potential on the wire on the SC

3.7. Pre-defined transitions

3.7.1. Objectives

 An important aspect of the new SPIS capabilities is the modification of parameters within the course
of the simulation. The methodology described in this section is adapted to the transitions/scenarios to be
implemented in the frame of this activity (spinning spacecraft, plasma source activation, potential sweep
between electrical nodes) and in the frame of SPIS-GEO [AD2]-[AD3] (eclipse exit) but can be easily
extrapolated to lots of other situations.

TR 6/17826 DESP -83-

JUNE 2013
UNCLASSIFIED

3.7.2. General design

 The logical diagram of the interaction of the simulation with transitions is presented in Figure 39.
From the user point of view, transitions are defined during the simulation global parameters setting and are
run automatically, i.e. without any further interaction, during the simulation integration. A transition is able
to pause the simulation, change a variety of its parameters and resume the simulation, using a series of so-
called Updater. Updaters actually change simulation parameters while transitions control the value of the
parameters versus time to be applied to updaters. Doing this, different transitions can access to the same type
of updaters.

UI level

NUM level Integrate simuFromUIParams Integrate

Time evolution along the simulation

Simu pause
notification

Continue simulation

Pause the simulation

Transition #T1

Build
simu

Build Transition

Updater #T1.1
Modify simu

Transition #T1
Pause simu

Call
Updaters

Regular info on
physical time

Transition #T1
continue simu

Figure 39 - Logical diagram of the interaction between the simulation integration and the transitions

3.7.3. Implementation of the Transition class

 The Transition interface follows the design patter Observable/Observer. The observable is the
simulation (the observed parameter being the current physical time of the simulation). The observers are the
realizations of the interface Transition that are added to the simulation.

TR 6/17826 DESP -84-

JUNE 2013
UNCLASSIFIED

Figure 40 - UML graph of the Transition class (example for SpinningSC class)

More details of the available Transition class implementation are provided in the next table.

Table 4 - List of Transitions

Constructors are called using global parameters given by the user:

 transitionNb defines the number of transitions
 transitionFlag# turns on/off the transition #
 transitionType# is one of the class of Table 4.
 transitionDt# controls the maximal time step allowed when the transition modifies the simulation

(hence helps limiting numerical overshoots)

TR 6/17826 DESP -85-

JUNE 2013
UNCLASSIFIED

Table 5 - List of Global parameters associated to Transitions definition

 Detailed transient phases depend on the transition itself:

 ASCII tables located in the NumKernel/Input/ repository of the simulation are sometimes used to
define the basic exit eclipse, the spinning spacecraft and the activation of artificial sources (2 header
lines are used for comments).

 The material conductivity evolution, aiming at representing changes of material bulk conductivity
versus time (to mimic eclipse exit for instance), is a tabulated material property.

 The Langmuir Probe transition is automatically generated by a LangmuirProbe instrument.
 Details are given in Table 6.

 Importantly is the definition of times used to calculate and update the value of changing parameters.
Pending on the transition itself, the update can be done:

 regularly, i.e. at each simulation time step: BasicEclipseExit , ConductivityEvolution,
TransientArtificialSources.

 or only at pre-defined check point: SpinningSpacecraft, LangmuirProbeTransition. It is useful when
the transition is costly (for instance spinning spacecraft) or when changes are really discrete
(Langmuir probe).

 The transitionDt# is always applied to simulationDt when arrived at a transition check point in order
to control the time step even for large changes of parameter values.

 The list of transitions is added to the simulation during the initialization of
SimulationFromUIParams. They are controlled by a transitionObserver which role is to determine what is
the next check point (among all transitions), to control that the simulation integration actually stops at the
next check point and to notify corresponding transition(s) by calling the performTransition(time, dt) method.

 The design of all current transitions is given in the next table.

TR 6/17826 DESP -86-

JUNE 2013
UNCLASSIFIED

Table 6 - Transitions description and setting

Transition class Action Updater classes
used

ASCII file name ASCII file
column 1

ASCII file
column 2

Tabulated
material
property

Instrument

BasicEclipseExit Performs a
progressive change
in sun flux
magnitude (not
direction)

SunFluxIntensity
Updater

BasicEclipseExit.txt time (Unit: [s]) relative sun flux
wrt to initiall
definition [-]

ConductivityEvolution Performs prog.
change in bulk
conductivity using
the tabulated BUCT
material property

RCCabsSCUpdat
er

N/A N/A N/A BUCT
[ohm-1.m-1] vs.
Time [s]

LangmuirProbeTransition Perform potential
sweep

 N/A N/A N/A N/A LangmuirProbe

SpinningSpacecraft Rotates
progressively the
ambient particle
injection basis, sun
flux, B and V cross
B field

SunFluxUpdater
VcrossBfieldUpd
ater

SpinningSpacecraft.txt X-coord of spin axis
Y-coord of spin axis
Z-coord of spin axis
SC Ang. vel. (rad/s)
Check time period (s)

N/A N/A N/A

TransientArtificialSources modifies the flux of
a source

SourceFluxUpdat
er

TransientArtificialSour
ceX.txt
where X is the Id of
source

time (Unit: [s]) relative source flux
wrt to initial
definition [-]

N/A N/A

TransientArtificialSources modifies the flux of
a sub-source

SourceFluxUpdat
er

TransientArtificialSour
ceX.Y.txt
wher X is the Id of the
mother source and Y
the Id of the sub-
source

time (Unit: [s]) relative source flux
wrt to initial
definition [-]

N/A N/A

TR 6/17826 DESP -87-

JUNE 2013
UNCLASSIFIED

Remark for the SpinningSpacecraft transition :
The Gmsh geometry file is defined in the referential frame linked to the spacecraft. When the spacecraft rotates with an angular
velocity , the orientation of injected particles, sun direction and magnetically induced electric field are changed. The rotation
of a space vector U is given by :

 sincos1cos, UNNNUUURV

 , where N is the rotation axis and = t

The design of all current updaters is given in the next table.

Table 7 - List of Updaters used in transitions

Updater class Action Inputs
SunFluxIntensityUpdater Changes the intensity of the

sun/photoEmission flux
new photoemission flux intensity as a ScalSurfField
on spacecraft

SunFluxUpdater

Changes the intensity and direction
of the sun /photoemission flux

sunX, sunY and sunZ components of the sun flux as
defined in UI global parameters (|Sun| = 1 at 1 AU).

RCCabsSCUpdater Modifies the RCCabsSC spacecraft
circuit of the simulation

new sets of material generic parameters

VcrossBfieldUpdater Modifies the electric field induced by
the motion of spacecraft in a
magnetic field, both in particle pusher
and in spacecraft potential boundary
condition.

VcrossB field has a space vector

SourceFluxUpdater Modifies the flux of a volume
distribution created from an artificial
source on the spacecraft (the surface
distribution and sampler)

Artificial volume distribution to update,
Source current,
Local Id of the source active on each mesh surface,
Id of this source

TR 6/17826 DESP -88-

JUNE 2013
UNCLASSIFIED

3.7.4. Applications

Some illustrations of transitions are presented in this paragraph.

The eclipse exit can be simulated by combination of a BasicEclipseExit and ConductivityEvolution
transitions, as shown in Figure 41.

Figure 41 - Transient phase of eclipse exit. Node 2 refers to the solar panels sunlit faces of a GEO spacecraft. Exit from eclipse

occurs at time t = 1000 s and lasts 60 s and consists in progressive sun flux and bulk conductivity evolution.

Figure 42 illustrates a spherical spacecraft (radius 0.1 m) covered half with ITO and half with kapton
immersed in a maxwellian plasma (temperature 0.1 eV, density 1e9 m-3 and drift of 7000 m/s along X),
including photoemission (Sun at 1 AU in Z-direction), with a spin of 2 rad/s around the Y-axis.

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0 0,5 1 1,5 2 2,5

time, s

po
te

nt
ia

l,
V ITO

Kapton
ITO
kapton

Figure 42 - Left: Potentials on a spinning spacecraft (lines) compared to a fixed attitude spacecraft (dots). The spin velocity is one

rotation per second. Right: probe potential when

TR 6/17826 DESP -89-

JUNE 2013
UNCLASSIFIED

The last example of Figure 43 concerns the activation/deactivation of a particle source on spacecraft.

0

0.2

0.4

0.6

0.8

1

0.E+00 1.E-05 2.E-05 3.E-05

time, s

re
la

tiv
e

 fl
u

x

Figure 43 - Progressive artificial source de-activation and re-activation. The spacecraft surface is on the left of the simulation

box.

3.8. Magnetic field

The magnetic field capabilities of previous SPIS versions were:
o Uniform and constant
o Runge-Kutta Cash-Karpe (RKCK) method to solve the particle trajectories

New items are:

o Iterative pusher for particle trajectory computing
o Magnetically induced electric field due to spacecraft motion
o Finer control of the processes

3.8.1. Iterative pusher

The fifth order RKCK method being precise but quite expensive in term of CPU time, an upgrade of the
particle pusher in the case of a magnetic field has been performed. In each cell (without any thin element),
the electric field is constant. As the magnetic field is also constant, the particle trajectory is analytical.
However, the interception the trajectory with a surface is not analytical. Hence the calculation of the particle
trajectory with the cell surface boundaries is calculated through a dichotomy method.

TR 6/17826 DESP -90-

JUNE 2013
UNCLASSIFIED

Rationale:

Particle motion writes: BVE
m

q

dt

Vd

 which is decomposed in a component parallel to the magnetic

field (//) and in a component perpendicular to the magnetic field ():

 BVE
m

q

dt

Vd

E
m

q

dt

Vd

//
//

The local orthonormal basis (X, Y, Z) is defined such as

o XEE

o At t = 0 s, YVXVVVV YXYX

00000 ,,,,

At any time t, one can demonstrate that the velocity ZVYVXVV ZYX

 writes:

 0

sin0cos0

sin0cos0

// ZZ

XYY

YXX

VtE
m

q
tV

B

E
tV

q

q
t

B

E
VtV

t
B

E
V

q

q
tVtV

and the helicoidal position:

 00
2

1

01cos
0

sin0
1

0cos10sin
0

2
// ZtVtE

m

q
tZ

Yt
B

E
t

V

q

q
t

B

E
VtY

Xt
B

E
V

q

q
t

V
tX

Z

X
Y

Y
X

where
m

Bq

Algorithm:

A new method crossTetraUniformEwithDichotomy of ComplexPusher class has been implemented. It takes
the same arguments as inputs as previous methods used to calculate particle trajectory and interception by
tetrahedron surfaces.

TR 6/17826 DESP -91-

JUNE 2013
UNCLASSIFIED

Remark: this method also applies to the case of interception by a thin wire by dichotomy. This is we describe
here the algorithm also for wires.

First, the local basis (X, Y, Z)local is constructed from the local value of B and E. The matrix M permitting to
pass from SPIS natural basis (X, Y, Z)SPIS to local basis is constructed. M: (X, Y, Z)SPIS (X, Y, Z)local.
In order to avoid particle exiting and re-entering the cell in tha same time step, the time step is initially
limited to characteristics times:

o CFL-like (characteristic time to cross a fraction of cell with the initial velocity)
o Magnetic field condition (fraction of gyro-frequency)
o Acceleration by E//.

For each sub time step:

o Calculation of the new position in local and SPIS natural coordinates
o Test particle position wrt to thin wires in the current cell. 3 possibilities :

o particle is outside any wire
o particle is on a wire surface : the trajectory is stopped
o particle is inside a wire: we go backward in time and the current time step is divided by 2

o Test particle position wrt to cell surfaces so as to determine if the particle is inside/outside the cell
o particle is far outside a cell : go back to previous time and divide the time step by 2
o particle is inside a cell : go to the new position and keep the same time step, except if the

initial time step has been divided once (then divide it by 2)
o particle is outside the cell, with only one negative barycentric coordinate, this coordinate

being small compared to pusher tolerance : the exit surface is identified
o The position on thin wires or surfaces is controlled by a relative tolerance level

iterativePusherRelTolPos (default value is 1e-3), i.e. the particle is collected if its barycentric
coordinates are smaller than the tolerance level.

TR 6/17826 DESP -92-

JUNE 2013
UNCLASSIFIED

Figure 44 - Illustration of the dichotomy algorithm used for particle pushing in case of magnetic field. Top: general design;

Bottom: application to the presence of an unmeshed thin wire.

Illustration:

Results are compared to the non-regression case of the SPIS-Maintenance activity SPIS_NRC_EcrossB.
Protons of 10 eV drift along in X-axis (source located at Y = 0.2 m with a current density of 1e-7 A/m2
(divided by 100 wrt NRC). Boundary conditions in +X and -X planes impose a macroscopic electric field of
10 V/m in X-axis. A Magnetic field of -4e-4 T is imposed along Z-axis.
Results agree with the theoretical intersection of the jet with the plane X = 1 m at position Y = 0.5866 m.
The performance for a simulation time step of 0.6 µs, a duration of 0.2 ms, 1 million of super particles and
17897 tetrahedron cells is:

o RKCK: 19 min CPU
o Dichotomy: 12 min CPU

dt

dt/2

dt/4

dt dt/2
dt/4

TR 6/17826 DESP -93-

JUNE 2013
UNCLASSIFIED

E

B

y

x

Potential, V

Theory

Ion density, m-3

Table 8 - Simulation of an ion jet dynamics immersed in E cross B field. Comparison with theory.

Input parameters:
The new global parameters permit a better control of the particle pusher.

Table 9 - New global parameters for particle pusher settings

KeyName
Value
Type

Default
Value Unit Description

Verbosity
Level Comment

magnetizedPlasmaFlag int 1 [-]

flag for taking account the effect of the
magnetic field and of the magnetically
induced electric field (due to spacecraft
motion) on particle trajectories. 1: yes;
0: no (un-magnetized plasma) MEDIUM

In case magnetic field
is turned ion by user,
particles will be
considered as
magnetized

BFieldIterativePusher int 1 None

flag for particle pusher method used in
case of magnetic field (0: RKCK
algorithm from spis 4.3; 1: Dichotomy
method from spis 5)

ADVANC
ED In case of B field

iterativePusherAbsTolP
os double 0.00001 [m]

precision of iterative particle pusher
(RKCK method): absolute tolerance
position EXPERT

iterativePusherAbsTolV
elo double 1E+12 [m/s]

precision of iterative particle pusher
(RKCK method): absolute tolerance
velocity EXPERT

iterativePusherRelTolP
os double 0.001 None

precision of iterative particle pusher
(either RKCK or dichotomy method):
relative tolerance position EXPERT

iterativePusherRelTolV
elo double 0.001 None

precision of iterative particle pusher
(RKCK method): relative tolerance
velocity EXPERT

3.8.2. Electric field induced by spacecraft motion in electric field

Rationale:

The change of space referential from the plasma referential to the spacecraft referential leads is accompanied
by a change in the electromagnetic field. Let note (, E, B) and (’, E’, B’) the electric potential, the electric

TR 6/17826 DESP -94-

JUNE 2013
UNCLASSIFIED

field and the magnetic field in the referential R of the plasma and in the referential R’ of the spacecraft,
respectively. The spacecraft velocity in R is noted VSC. In the non-relativistic limit:

EE

BVEE

BB

SC

,

In the referential R of the plasma

o The undisturbed electric field, i.e. in the absence of the spacecraft and neglecting the electric field
generated by an external source (as Earth for example), is null

o Due to the Hall effect, a potential gradient establishes in a conductive drifting spacecraft and the

electric field inside the conductor becomes BVSC

In the referential R’ of the spacecraft in translation of VSC with respect to R:

o The electric field in an undisturbed plasma, becomes BVEE SC

o Conductive elements are isopotential

Figure 45 - Illustration of the potential generated by a spacecraft drifting in a magnetized plasma; in the referential of the plasma

(left) and in the referential of the spacecraft (right)

In the example of Figure 45, the electric field generated by the (1m long) spacecraft drift is -10 V/m in the
referential R. In the referential R’ of the spacecraft, an additional electric field of -10 V/m is added to the
undisturbed electric field E (the plasma domain is 30 m long). This V cross B field can clearly be taken into
account either placing the problem either in the referential R, either in the referential R’ or, as a third
solution: a mix of both.

VSC

 0
-10 0

0

R R’

20
0 0

-10

 B

’

 B

TR 6/17826 DESP -95-

JUNE 2013
UNCLASSIFIED

Implementation:

Constraints on the reference frame choice are:

o The spacecraft mesh lives on the referential R’ of the spacecraft.
o The boundary conditions are simple to define in R and more complicated in R’.
o The spacecraft circuit is well-defined in R’.
o The ambient particle velocities v are naturally defined in R. In R’: v’ = v - VSC.
o The particles emitted by the spacecraft are naturally defined in R’.

Both data living on R and R’ are used to benefit from the past implementations of SPIS and avoid a too high
level of complexity of the developments:

 A new variable scVelocity (of type DimVect) is added to the class SC defining the spacecraft
 Poisson equation is solved in the referential R of the plasma: E and are used

o The external boundary conditions are unchanged with respect to past SPIS implementations
o The boundary conditions on the spacecraft are changed to fit the Hall effect: the Dirichlet

potential is calculated on each point of coordinates x of the spacecraft surface using the

potentials ’ in the referential of the spacecraft R’: xBVSC

.

o is defined to an arbitrary constant depending on the reference position x0 leading to = ’.
In order to have as much as possible negative potentials on the spacecraft, it is decided to set
x0 such as max() = 0 (this choice has no impact on the final solution since the current adapts
to impose the same final equilibrium potential).

o The Boltzmann distribution equation (used for density and in the Poisson non-linear solver) is
unchanged since such species are in equilibrium with .

o In the case of a spacecraft rotating at angular velocity around the spin axis SSPIN, the second
term of the equation is solved using the same approach as described in paragraph 83

 tEtBV VBSC

 0tt

)(sin)(cos1)(cos)(000 tESSStEtEtE VBSPINSPINSPINVBVBVB

 The particle dynamics is solved in the referential R’ of the spacecraft since their positions x’, velocity
v’ as well as their collection, emission currents on spacecraft, are all defined in the frame of the
spacecraft mesh. However, we use E of R to calculate the transport:

o The particle pusher is modified taking into account the equation of the dynamics in R’:

 BVBVE
m

q

dt

Vd

V
dt

xd

SC

o The injection of particles is changed with respect to the previous injection defined in R. As
the velocity distribution is initialized by users in the referential R at rest, a drift velocity
related to the spacecraft motion wrt to R is added.

o In case of spinning spacecraft, the same correction is applied.

TR 6/17826 DESP -96-

JUNE 2013
UNCLASSIFIED

 The spacecraft circuit is unchanged, i.e. solved in the reference frame R’ of the spacecraft. It
calculates the surface potentials ’ needed by the Poisson solver as a spacecraft boundary condition.

Input parameters:

Table 10 - New global parameters for VcrossB field

KeyName
Value
Type

Default
Value Unit Description

Verbosity
Level Comment

scVeloCrossBFlag int 1 [-]

flag to take account the effect induced
by the spacecraft drift on the
spacecraft surface potential (in the
reference frame of the plasma)

ADVANC
ED

If magnetic field and
drifting spacecraft,
then the electric field
induced by the motion
of the spacecraft is
turned on.

scVeloX double 0 [m/s]

x-component of the spacecraft velocity
in the reference frame of the plasma at
rest

ADVANC
ED

scVeloY double 0 [m/s]

y-component of the spacecraft velocity
in the reference frame of the plasma at
rest

ADVANC
ED

scVeloZ double 0 [m/s]

z-component of the spacecraft velocity
in the reference frame of the plasma at
rest

ADVANC
ED

TR 6/17826 DESP -97-

JUNE 2013
UNCLASSIFIED

Quantity Value
Temperature 0.2 eV

Electron/ion density 2,81010 #/m3
Debye length 0.02 m

Sphere radius R 0.02 m
Number of

tetrahedrons
~79,433

Simulation box
diameter

0.20 m

Number of macro-
particles

~500,000

Bz 310-4 T
Electron Gyro Radius /

R
0.18

Ion Gyro Radius / R 7.6
Spacecraft velocity Vy - 7500 m/s

Illustrations:

The electric field induced by the motion of a spacecraft
flowing in LEO condition is presented in the figure on
the left. For this 10 m long spacecraft, a potential drop
of about 4 V is obtained on spacecraft surface. On the
International Space Station the potential difference can
attain 50 to 100 V typically. The effect on populations
is not simulated here but the electric field is strongly
affected.

The second illustration concerns a spherical probe, with
comparison to results obtained on another code (R.
Marchand, “PTetra, a Tool to Simulate Low Orbit
Satellite–Plasma Interaction”, IEEE Trans. Plasma Sci.,
Vol 40, N°2, pp. 217-229, 2010). In this example,
electrons and ions are submitted to a magnetic field of
310-4 T in the z-direction. Low temperature electrons
are magnetized and ions are practically unmagnetized
(large gyroradius). Debye length is equal to probe
radius, i.e. 2 cm. The probe velocity of -7500 m/s in the
y-direction induces a potential drop of 0.19 V on probe

surface, in the plasma referential at rest.
The probe floating potential is -0.4 V. The current density
on the probe is similar to the results obtained previously.
The asymmetric 3D structure is well reproduced, see
Figure 46.

Figure 46 - Current density on a probe flowing in a magnetized

plasma

Electric potential around a spacecraft flowing at
velocity 7500 m/s in a magnetic field of 5e-5 T.

Potential difference on this 10 m long spacecraft is
about 4 V. The plasma is not considered here

TR 6/17826 DESP -98-

JUNE 2013
UNCLASSIFIED

3.9. Performance and accuracy

Performance and accuracy has been improved by a multi-threading approach, the adaptation of boundary
conditions in term of electric field and matter injection, and by providing users with a large set of advanced
monitoring capabilities.

3.9.1. Varying number of super particles

Due to meshing constraints (unstructured mesh with local refinement close to small spacecraft surfaces),
super particle statistics can vary significantly in the simulation boxes. As particle are injected at the frontier
of the box, their number per cell decreases when getting closer to the spacecraft. The user can choose to
increase the number of super particles with the global parameter
The code detects first areas that need to be repopulated with super-particles. The information is tracked
toward the particle sampler on surface boundaries, by using the initial positions of particles that succeeded in
reaching the target areas. The sampler multiplies the number of super particles.

2/ modify injection
of PIC particles

ambient species

good ? bad
statistics ?

Figure 47 - Principle of varying number of super-particle injection

Algorithm:

o Keep the information of each particle origin using an upgrade of the RichPartList class also used for
particle detection, i.e. the tracking mode. in which particle initial properties are saved (position,
velocity).

o Indicate a target for statistics as number of SP per volume node (some nodes with a higher target
objective, as e.g. close to spacecraft, thin wire)

o At each integration step, collect the statistics of SP per volume node as a matrix M(injection surface,
volume node) relating the surfaces of injection to the volume nodes.

TR 6/17826 DESP -99-

JUNE 2013
UNCLASSIFIED

o Compare the current super-particle number to the target objective on each cell and generate a local
densification of the SP number to be injected locally on each boundary surface for the next time step

o Keep 100 % of the old injection and add X % of optimized particles, X being controlled by user with
the global parameter pop#Optimization (example: 0.5 => add 50 % of optimized particles to the
original liste). This feature is only applicable to Generic PIC population, see section 3.4.

o Inject the modified number of SP

3.9.2. External boundary conditions upgrade

The precision of the plasma solver has been improved upgrading the boundary conditions of the external
frontier.

3.9.2.1. Matter boundary conditions

At external boundaries, the potential is regularly different from zero volts, meaning that frontiers can be
inside the plasma sheath around the spacecraft. As a result, the injection of a constant distribution assuming
an undisturbed plasma is only approximate. This can explain the errors of some 3 to 5% often observed
when comparing previous SPIS version with well-known characteristics of spherical or cylindrical probes.

In the new version, fluxes and distribution functions at boundaries are modified during injection, taking into
account the local potential.

Algorithm in 3D:
The flux of a Maxwellian repulsed specie becomes:

Assuming Liouville theorem assumptions (isotropic specie, all trajectories in phase space filled), the flux of
a Maxwellian attracted specie becomes:

<

TR 6/17826 DESP -100-

JUNE 2013
UNCLASSIFIED

Algorithm in 2D:
For the attracted specie:

<<

Illustration:
An example of the precision obtained with this improvement is shown later ion in section

3.9.2.2. Electric field boundary condition

The algorithm consists in automatically and locally shifting between two regimes

o If the external boundary is outside the sheath, the presheath model is used ~1/r2
o Else: vacuum-like condition ~1/r

The updater SheathOrPresheathPoissonBCUpdater is attached to the simulation. Its role is to update
dynamically the Poisson boundary conditions following the plasma parameters. If the local potential || is
smaller than the electron temperature kTe/e then the pre-sheath model is used, else the vacuum-like condition
is used.

TR 6/17826 DESP -101-

JUNE 2013
UNCLASSIFIED

Simulation
box

S/C

Plasma
sheath
 ~ kTe

BC : ~1/r

BC : ~1/r2

Figure 48 - Overview of boundary condition automatic selection pending on location within the plasma sheath around the object

The global parameter poissonBCParameter2 with a value of -1 activate this regime (1 =vacuum-like; 2 =
pre-sheath; 0 = mixed Dirichlet Neuman condition)

3.9.2.3. Illustrative example

Characteristic of a spherical probe in a Maxwellian plasma:
Characteristics of a sphere in a maxwellian unmagnetized collisionless plasma of hydrogen has been
compared to similar results (J. G. Laframboise, “Theory of spherical and cylindrical Langmuir probes in a
collisionless, Maxwellian plasma at rest,” Ph.D. dissertation, University of Toronto, 1966). Two cases are
considered, corresponding to Debye length: (a) two times larger and (b) equal to the probe radius.
Simulation parameters are presented in next table.
Next figure shows the comparison with results from Laframboise. The agreement between the two is within
1% in all these long Debye length cases (a) and (b)

Characteristics of a cylindrical probe immersed in a Maxwellian plasma has been calculated using symmetry
conditions for electric field and fluxes in the z-direction perpendicular to the cylinder axis. The attracted
specie flux was calculated following the 2D OML injection algorithm instead of the default 3D OML. The
agreement with Laframboise is within 1% error.

TR 6/17826 DESP -102-

JUNE 2013
UNCLASSIFIED

Quantity Value (a) Value (b)

Temperature 0.5 eV 0.2 eV

Electron/ion density 6.91108 m-3 2.7631010 m-3

Debye length 0.2 m 0.02 m

Potential [0 to 12.5 V] [0 to 5 V]

Sphere radius 0.1 m 0.02 m

Particle model full-PIC full-PIC

Number of tetrahedrons 127,759 56,726

Simulation box diameter 1.3 m 0.2 m

 Number of macro-
particles

430,000 to
1,500,000

193,000 to
650,000

Spherical probe

Quantity Value

Temperature 0.2 eV

Electron/ion density 2.761010 m-3

Debye length 0.02 m

Potential [0-5 V]

Cylinder radius 0.02 m

Cylinder length 0.08 m

Number of tetrahedrons 45,000

Simulation box diameter 0.4 m

Number of macro-
particles

460,000

Cylindrical probe

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Voltage ratio (e*phi/kT)

A
tt

ra
ct

ed
 S

pe
ci

es
 C

ur
re

nt
 (

I/I
0)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

Voltage ratio (e*phi/kT)

A
tt

ra
ct

ed
 S

pe
ci

es
 C

ur
re

nt
 (

I/
I0

)

Figure 49 - Current collection on spherical (left) and cylindrical (right) probes. SPIS results are indicated with dots. Laframboise

results are shown in solid line. The normalization currents are
ee mkTeRnI 24 2

0 and
ee mkTeRLnI 220 respectively for

spherical and cylindrical probes.

TR 6/17826 DESP -103-

JUNE 2013
UNCLASSIFIED

3.9.3. Multithreading

We present in this section a major improvement of SPIS efficiency in terms of CPU time cost. This
enhancement concerns the multi-threading of the particle pusher. The particle pushing is one of the most
time consuming tasks of the SPIS system because hundreds of thousands and possibly millions of particles
are injected in the volume at each time step.

Algorithm:
The particle move method is performed in the VolDistrib class. In the case of a PIC volume distribution, the
move method calls ComplexPusher objects. Both PICVolDistrib and ComplexPusher classes have been
adapted to a multi-thread approach. An ExecutorService is associated to PIC volume distribution with a
number of parallel thread controlled at UI level by the global parameter pusherThreadNb.

The Java language is very well adapted to the multi-thread approach. A new class TaskOfParticlePusher
extends the Callable class. The data used by this class are passed to the constructor: a ComplexPusher and
the data permitting this pusher to perform its push() method (list of particle, time step, …). The call()
method of the Callable class is overridden : launch of the ComplexPusher push() method and charge deposit.

The push() method of the ComplexPusher has itself been modified in order to move only a fraction of the list
of particles (one particle every N particle).

This method is schematically depicted in Figure 50.

TR 6/17826 DESP -104-

JUNE 2013
UNCLASSIFIED

Figure 50 - Example of multi-thread approach with 2 threads. The first thread is performed in the current SPIS thread, while the

second involves a new TaskOfParticlePusher

At the end of the pusher multi-thread execution, the charge deposited by each list of particles is summed up
in order to calculate the electric field at next step.

Illustration:
Non-regression of the new development is shown in Figure 51, in which the results obtained with the
previous SPIS version SVN:58 (based on SPIS.4.3.1) is compared to a simulation performed with the
development version SVN:92. Respectively one, four and eight threads are used. The very slight differences
come from the Monte-Carlo method used for particle injection during the time step.

TaskOfParticlePusher[1]

List of
particles

p0
p1
p2
p3
p4
…

pusher[0]

p0
p2
p4
…

pusher[1]

p1
p3
p5
…

TR 6/17826 DESP -105-

JUNE 2013
UNCLASSIFIED

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

0 200 400 600 800 1000

time, s

p
o

te
nt

ia
l,

V
eight threads one thread

four threads older version (one thread)

Figure 51 - Non-regression test of multi-threading method

A gain of 2.7 to 3.4 is obtained on the particle pushing with 4 threads in parallel instead of only one.
A gain of 3.2 to 4.9 is obtained on the particle pusher with 8 threads in parallel instead of only one.

The total gain depends however on the type of simulation. If the particle transport is very costly with respect
to other processes, then the gain on the overall computation time can be important.

3.9.4. Circuit solver update

This improvement was designed in the frame of the SPIS-GEO. The spacecraft equivalent electrical circuit
solver is composed of initialization/updating routines and of a linear system A.X = B where X is the solution
(the potential on surface potential), A the circuit matrix and B the currents. In SPIS 4.3.1 version, a linear
system solver based on a Gauss method was used. It was found to be costly when using a large number of
dielectric elementary surfaces.

A linear system solver based on an iterative Conjugate Gradient Squared method (CGS) has been
implemented. It has the advantage to converge in a very limited number of iterations. This new solver is
controlled by the global parameter implicitCircuitSolver (integer, default value = 1 --> Gauss; if 0 --> use of
linear solver instead).

We compared the CPU time used to solve the linear system of a 1671 node circuit: 155 ms with CGS
algorithm instead of 3100 ms with Gauss method, i.e. a gain up to 20 (sometimes 40!).

The main cost of the circuit solver is now due to the initialization of the circuit dIdV matrix at each step
(3000-3100 ms). The global gain on the circuit solver is about 2.6.

TR 6/17826 DESP -106-

JUNE 2013
UNCLASSIFIED

Gauss Solver:

LinSolveDoublePrecision tol 1e-6:

LinSolveDoublePrecision tol 1e-3:

Figure 52 - CGS circuit solver efficiency compared to Gauss method

TR 6/17826 DESP -107-

JUNE 2013
UNCLASSIFIED

3.9.5. Numerical monitors capabilities

Monitoring of CPU time:
A new class of objects(TaskComputingDuration) has been created to monitor the CPU time of the most
costly computing processes of the NUM core. As shown in the example below, the detailed CPU times is
presented at the end of the simulation from top to low levels. Extra data (monitoring during the simulation)
can be achieved via a new global parameter (taskDurationVerbose). This new feature is very useful to
determine which numerical routines are the more costly and can help users to tune the numerical parameters.

Plasma sensors:
As described in section 3.2.6, lots of plasma sensors can produce data along the simulation, including local
monitors embedded in the computational volume. Most importantly is the possibility to add such instruments
within the course of the simulation or to modify their parameters (position, frequency …). The numerical
behaviour can be checked by users and increase the level of confidence one may have on the results obtained
with the tool.

TR 6/17826 DESP -108-

JUNE 2013
UNCLASSIFIED

Illustrations:
An example of plasma sensor corresponds to the spinning sphere described in paragraph 3.7.4, Figure 42.
Four sensors are used: 2 ion density sensors and 2 potential sensors. The oscillatory regime can easily be
verified on next figures. A possible output for the user is an help to choose the densification to be applied to
super particle number.

Figure 53 - Illustration of a possible use of plasma sensors.

Sensors 3, 4

Sensors 1, 2

TR 6/17826 DESP -109-

JUNE 2013
UNCLASSIFIED

3.10. Other developments

3.10.1. Spacecraft area

The total area of the spacecraft is now available in the log console at the initialization of the simulation. It
aims at providing the real surface meshed. For example, depending on the mesh refinement, we can obtain
differences of more than 2 % for a spherical probe.

3.10.2. Pause simulation

A volatile boolean variable isPaused has been added to SimulationFromUIParams (“volatile” means that
can be modified by another thread, here SPIS-UI). A public accessor is given and UI provides the user with
the possibility to click on a “pause” button” which automatically makes the numerical kernel providing the
data at the current time step and wait the user giving order to continue the simulation with another total
duration.

3.10.3. Control of simulationDt

The automatic increase of the simulation time step can be moderated by a new global parameter
simulationDtMaxFactor. The maximal time step dtn+1 of the spacecraft loop n+1 is
dtn simulationDtMaxFactor. In some sensitive cases, it can permit to perform a smoother time integration.

3.10.4. Charge deposit in volume

In previous version, charge deposit was computed at the end of particle trajectory integration from UI.
However, numerical routines were already implemented for the deposit of the charge along the trajectory. It
aimed at increasing the statistics since one particle could deposit its charge over a large number of cells. In
some cases, it is clearly a advantage but in other cases, it can produce numerical instabilities of the Poisson-
Vlasov system. It indeed can provoke large instable structures to develop within the volume. The work has
then consisted in implementing a new global parameter chargeDepositDuringIntegrationFlag :

 chargeDepositDuringIntegrationFlag = 0 (default value) then no charge deposit during integration
 chargeDepositDuringIntegrationFlag = 1 then charge deposit during integration

It is the responsibility of the user to select this mode.

3.10.5. Backtracking volume distribution

The accuracy of the particle backtracking in BackTrackingVolDistrib class relies on the discretization of the
maxwellian energy distribution used for injecting particles. The work has consisted in providing new global
parameters for the geometric series describing the distribution:

 maxwellEnergySamplerPointNb : number of points of the series (default = 20)
 maxwellEnergySamplerSpacing: first relative spacing of the series (absolute value is obtained

multiplying by the population temperature) (default = 0.02)
 maxwellEnergySamplerFactor: ratio of the geometric increase (default = 1.3)

NB: The current collection by a spherical probe in medium Debye length regime has been enhanced using
more points in the discretization (error decreased from 1.5 % to less than 1.0%).

	doc
	RT 6-17826-SPIS-SCI-ADD-SDD-v1.6
	RT 6-17826-SPIS-SCI-ADD-SDD-v1.6.pdf
	doc

