
How to control NUM from UI in SPIS 5

This html page presents the full list of parameters used by the numerical kernel to control the
simulation. It constitutes a key complement to the SPIS5 User Manual.

Introduction

A first way of controlling the execution of SPIS/NUM solvers is through the source code. The object
oriented (OO) language Java allows an easy handling of objects like a Spacecraft, a Plasma or a
VolumeDistribution. In practice, this can be done either:
- directly in the NUM Java source code as documented in Java for NUM.html (Java basics), NUM

architecture.html (code architecture) and NUM integration in framework.html (practical file
integration)

- through the Jython command line of SPIS/UI (still to be documented)

The second simplified way of controlling the execution of SPIS/NUM is through a more classical user
interface, offering the capability to modify parameters, either global or local. This is the subject of this
page. Of course it reduces somewhat the range of possibilities with respect to what is really supported
by the solvers.

The Advanced users may look at the source code of
..\API\public\spis\Top\Simulation\SimulationFromUIParams.html, or sometimes other routines, to see how the
global parameters control the simulation at top level. A practical way to find what a global parameter
is used for, is to search where is extracted, which can easily be done by looking where the String
variable containing its name is used. All these static Strings are defined in the Common class (and a
global parameter name should always be taken from these common variables, never hard-coded
anywhere in the code).

Global parameters are presented first, local parameters, i.e. fields living either in the volume or
on a surface (spacecraft or external boundary), are presented next.
Note the last column of the tables below, stating whether each property is in use or not as of this
software version (currently 5.0.2).

As explained in UI documentation, local parameters are based on Material/Electric/Plasma properties
that can be edited via GUI, and are then to be assigned locally on your CAD model group per group
thanks to UI Group Editor. Global parameters are simply edited in UI Global Parameter Editor.

Global parameters

The general behaviour of NUM solvers is ruled by global parameters. They are organised by sections:
- Simulation control
- Plasma
- MultiZone
- Poisson equation
- B Field
- Spacecraft
- Particles sources on spacecraft
- Surface interactions

- Volume interactions
- Outputs
- Scenario
- Transitions

In each section the parameters are first reviewed, then listed in a table. All parameters are given with
default values and level of expertise. Lower level of expertise can easily be changed by users while
more expert levels need better understanding of numerical models. The default values given here are
thought to be relevant of most situations but this is the responsibility of the user to check their
relevance. The next pages should help understanding the role of each parameter.

Simulation control

The hierarchical structure of a simulation is outlined in the figure below. The nested boxes reflect the object structure of the code (what the basic user
user may not care about) while the arrows represent the time evolution of a simulation (what he needs to be aware of).

The time integration process was described in SPIS 5 User Manual. We only give here some extra etails for advanced understanding of the numerical
loops.

Matter
Pop. 1

Matter
Pop. N

popDuration1 popDurationN

thisPopDt1 thisPopDtN

Matter

Poisson
equation
solving

Fields

plasmaDuration
plasmaDt

PlasmaSpacecraft

Spacecraft
Circuit
solving

Duration
simulationDt

Simulation

Outputs

Inputs

The largest allowable time steps at each nested level are written in red. They are controlled by user defined parameters:
- At particle population level (noted thisPopDt): in the past the maximum allowable time steps was to be defined so that particles do not cross more

than a fraction of a cell at each times step (CFL-like condition). These maximum time steps are defined below in sections plasma / particle sources
/ interactions respectively for ambient particles, actively emitted particles and secondary particles (parameters xxxxDt). They can either be user-
defined (best if user can do that!) or automatically determined by the code (default). The user must be warned that the code automated time step
determination is rather coarse as it is based on the particle steps at injection. If particles are strongly accelerated after injection, time step can get

too coarse and result in inaccuracies in trajectory integration (define them manually in such cases). However today, the improved trajectory
integration scheme (see PIC model) suppresses this constraint. The integration is either exact (parabolic trajectories), or with an adaptive time step
(subcycling) with controlled accuracy (Runge-Kutta Cash-Karp method, since SPIS v4.0; and more efficient dichotomy-like method since SPIS
v5).

- At plasma level (noted plasmaDt): here the maximum authorised time step plasmaDt should be smaller than a plasma period (~0.2Tp =
0.2*2π/ωp). In principle if matter populations are sped up (see numerical times below), the allowed plasmaDt is increased by the same factor
(since the numerical integration time of these populations is reduced by that factor). If plasmaDt is set to 0, it is determined semi automatically:
the lower level time step (smallest time step allowed among matter populations) is used, which is a degraded criterion compared to the plasma
period (however for cells larger than Debye length, the CFL condition for particles is stronger than this plasma stability criterion, hence this semi-
automatic setting is sufficient for stability, even though not optimal).

- At simulation level (noted simulationDt): the top level time step simulationDt is constrained by the stability of the SC-plasma coupling (for a
floating SC). The smaller the SC capacitances, the faster the SC dynamics, the smaller this time step must be. Theoretical limits are simulationDt
<< Capacitance × Potential / CollectedCurrent (at eigenvalue level for local values). In practice SC absolute capacitance Csat is the smallest
capacitance and yields the largest eigenvalue, hence the stability criterion is often simulationDt << Csat × spacecraftPotential /
totalCollectedCurrent. If the exact time evolution of the SC absolute potential is not of major concern to the user (if equilibrium only is pursued)
the value of Csat can thus be overestimated to improve stability and/or maximum allowed simulationDt (Csat becomes a parameter of numerical
convergence to steady state). If simulationDt is set to 0, it is determined semi automatically: the lower level time step (plasmaDt) is used, which is
a degraded criterion compared to the CU/I eigenvalue criterion (but usually stronger, hence insuring stability)

Since SPIS v4.0 an extra constraint applies to the maximum allowable time scale, the validity of dV. As explained in the circuit solver technical note,
in the new implicit solver, current change estimations are supplied to the circuit solver with a given validity range for potential changes. On the other
hand some of the above constraints can be relaxed with this new feature, in particular the one on simulationDt which is in a way taken into account
automatically by the solver.
Combined with the automatic determination of the times step of the new circuit solver (cf. simulationDt parameter), much faster convergence can
often by achieved.

At each level involving different time structures, if ever one of the characteristic times is faster than the others it may be sped up by considering that
the fast process dynamics is quasi-static as compared to the slow one. In such a case (to be assessed by the user), the dynamics of the slower process
may not need to be modelled during as long a duration as the fast one, simply because it reached its steady state in a smaller amount of time. Among
the main three nested levels of the chart (Simulation, Plasma, Matter), this method, that we may call numerical times, can be used at the two lower
levels:
- at matter level: computation of faster populations dynamics (typically electrons or sometimes fast ions) can be sped up by only integrating over a

smaller time for these populations than for the others. This is controlled by two parameters per population (see below in sections plasma / particle
sources / interactions respectively for ambient particles, actively emitted particles and secondary particles). It is the responsibility of the user to
control the validity of the quasi-steadiness assumption. These parameters pop#Dt, pop#Duration are described in SPIS5 User Manual.

- at plasma-SC level: plasma dynamics is often faster than spacecraft charging (at least differential charging). Plasma can thus often be considered
as stationary at the large time scale of surface potential dynamics (to be checked by user in each case). If so, plasma dynamics can be sped up
thanks to the parameters plasmaDt and plasmaDuration also described in SPIS5 User Manual.

NB: in some modelling cases, these speed up parameters are irrelevant (Boltzmann electrons, SC at fixed potential...).

Since SPIS v4.3, it is possible for the user to define the integration duration for the plasma and the populations (as e.g. for ambient ions). For the sake
of completeness, the compatibility with older SPIS versions is described in Time_steps_RC_4.3.

WARNING: We recommend to use the parameters described in SPIS 5 User Manual : i.e. : simulationDt, plasmaDuration, plasmaDt,
pop#Dt and pop#Duration and to avoid automatic modes instead of the speed up, fixedDt parameters.

Name Type
Default
Value

Unit
(cf allowed
units) Description

Expertise
Level In use

didvRelaxationTime double 1E+30 [s] dIdV relaxation time Advanced
since

SPIS5

dimensionality int 3 [-] Physical dimensionality of the assumptions done in code Advanced
since

SPIS5
duration double 1 [s] Duration of the simulation Low yes

fixedDt int 0 [-]
flag to have fixed integration duration dt of all populations (if yes, durations
will be each population dtMax) (0 is recommended = no, 1=yes) Expert yes

fixedSimulationDtFlag int 0 None

flag to define the time step evolution mode: 0 => automatic calculation (as a
function of the validity: maximum time step equal simulationDt), 1 => fixed
time step equal to SimulationDt (Infinite validity for the current scalers - if
activated) Expert no

noCurrentScalerFlag int 0 None
flag to desactivate the dI/dV calculation: 0 => activated, 1 => disactivated (zero
current variation asumed in the implicit circuit solver) Expert no

plasmaDt double 1E-05 [s]
Time step for global plasma dynamics (semi-automatic if 0: determined by
Lower level time step = smallest matter dt) Medium yes

plasmaDuration double 1E-05 [s]
Integration duration of the plasma dynamics (automatic if 0: plasma dynamics
is only integrated over a fraction 1/plasmaSpeedUp of actual physical time) Medium yes

plasmaSpeedUp double 1 [-]

Numerical times speed-up factor for plasma (plasma dynamics is only
integrated over a fraction 1/plasmaSpeedUp of actual physical time): not
recommended use Expert yes

plasmaUnderRelaxTimeCstt double 0 [s]

under-relaxation time constant for plasma (default=0 => no under-relaxation). If
not 0, at each step of the Poisson-matter loop:
- Poisson eq. is solved, giving the Esoled solution
- The new electric field is computed as (1-w)* Esoled + w*Eold where Eold is

the old electric field, w = e-dt/underRelaxationTimeConstant a weight function, .and dt
the time step of the loop. Expert yes

It amounts to underrelaxing with time constant plasmaUnderRelaxTimeCstt
(leading e.g. to an exponential decay with this time constant in case a step-like
variation of density in Poison eq.)

scenario String Scenario None

(possible) scenario for the simulation. Name of the scenario used to run
successive simulations (or simulation with externally-induced changes).
The default value, scenario = "Scenario", is trivial (no changes).
See the Scenario section for the general rules, the example of the
PotentialSweep Scenario, and the meaning of the scenario parameters in this
case. Expert yes

scenarioParameter1,
scenarioParameter2, etc.

String [-] Scenario parameters, with a specific meaning depending on each Scenario.
See the Scenario section for the meaning of the scenario parameters for the case
of the PotentialSweep Scenario.

Expert

yes
simulationDt double 0.05 [s] see SPIS 5 User Manual (recommended : positive value) Low yes
simulationDtInit double 0.0001 [s] initial time step for global simulation dynamics (only used if simulationDt >0) Medium yes
simulationDtMaxFactor double 5 [s] maximum amplification factor of the global simulation dynamics time step Advanced yes

spisGEO int 0 None
flag to define SPIS-GEO-MEO automatic settings (1: activated, recommended
for Geo/MEO surface charging applications) Medium

since
SPIS5

Back to top.

Plasma
This section defines the environment through two distributions of electrons and two of ions. The total should be neutral (not enforced).

The major point to be noted is that some of the parameters are names of classes. It means that Java generates a class from its name, which is possible
thanks to the powerful introspection capabilities of Java. Reasonable defaults are provided for these classes, to which shy users can stick.
The general rule for the environmentType parameter, which defines the environment, is:
- this class must derive from the class Environment
- have a specific constructor including the UI-defined parameters as described in "Writing UI-supported classes" page and in

..\API\public\spis\Top\Plasma\Environment.html
- in practice in SPIS 4 following these specifications only BiMaxwellianEnvironment was implemented, which may involve two Maxwellians or only

one by setting the second one(s) to zero density (as in the defaults)
The general rules for the ionDistrib* electronDistrib* parameters, which define the 4 particle populations (2 of ions, 2 electrons), is:
- these classes must derive from the class VolDistribWithIO
- have a specific constructor including the UI-defined parameters as described in "Writing UI-supported classes" page and in

VolDistrib\VolDistribWithIO.html
- in practice since SPIS v4.0 the following distributions were available:

- GlobalMaxwellBoltzmannVolDistrib: describes a particle population as a global thermal equilibrium distribution (Maxwell-Boltzmann) and is
usually valid when no attractive potential or potential barrier exists (density increase is limited to a linear variation for positive potential)

- UnlimitedGlobalMaxwellBoltzmannVolDistrib: similar Maxwell-Boltzmann distribution but density increase is not limited for positive potential
(remains exponential)

- PICVolDistrib: really simulates this population dynamics but is much more costly in computation time and memory
- BackTrackingVolDistrib: computes currents onto spacecraft surface through backtracking (but does not compute densities!)
- BacktrackingBoltzmannCompositeVolDistrib: computes currents onto spacecraft surface through backtracking and densities through Boltzmann

distribution
- BacktrackingPICCompositeVolDistrib: computes currents onto spacecraft surface through backtracking and densities through Boltzmann

distribution
- HybridMZVolDistrib: hybrid multi-zone volume distribution: two different volume distributions are used in two different zones: Boltzmann in

large density zone (quasi neutral) and PIC in lower density region, cf. Multi-physical modelling algorithms technical note
- NoSinkHMZVD: similar hybrid multi-zone volume distribution but this population is not in contact with a sink or unlimited source (as e.g. the

ambient environment), hence a balance for these particles is to be computed (still experimented, limited stability, cf. Multi-physical modelling
algorithms technical note)

- LocalMaxwellVolDistrib: simple constant distribution, mostly used for debugging.

The supported types of particle are currently electron, H+, O+, H2O+, Xe, Xe+, Xe++, Ar, Ar+, Ar++, Cs, Cs+, In, In+, C+ and Si+ but can easily be
increased (see the source of ..\API\public\spis\Top\Default\SpisDefaultPartTypes.html).

Name Type Default Value Unit Description
Expertise

Level In use

avPartNbPerCell double 5 None

average number of super-particle per cell.
NB: the average particle number per node is more
relevant because computation is mostly on the nodes. It
is 6 times bigger, this is why avPartNbPerCell can be
rather small ~ 5 Advanced yes

BFieldIterativePusher int 1 None

flag for particle pusher method used in case of magnetic
field (0: RKCK algorithm from spis 4.3; 1: Dichotomy
method from spis 5) Advanced

since
SPIS5

btPartNbPerSurf int 20 None
number of super-particle generated per surface element
for back tracking Advanced yes

chargeDepositDuringIntegrationFlag int 1 [-]

flag for setting charge deposit in volume of PIC
distribution during instead of after the trajectory
integration; 0: after ; 1: during Medium yes

electronDensity double 1E+06 [m-3] Electron density (1st population) Low yes
electronDensity2 double 1E+06 [#/m3] Electron density (2nd population) Low yes

electronDensityCutoff double 0 [m-3] truncation of elec density in case of fluid model Advanced yes
electronDistrib String GlobalMaxwellBoltzmannVolDistrib None Name of the VolDistrib class to be used for electrons Medium yes

electronDistrib2 String PICVolDistrib None
Name of the VolDistrib class to be used for the 2nd
electron population Medium yes

electronDt double 1E-06 [s]
Maximum integration time step for electron 1st
population (see SPIS 5 User Manual) Medium yes

electronDt2 double 1E-07 [s]
Maximum integration time step for electron 2nd
population (see SPIS 5 User Manual)

Medium
Medium yes

electronDuration double 1E-06 [s]
Maximum integration duration for electron 1st
population (see SPIS 5 User Manual) Medium yes

electronDuration2 double 1E-07 [s]
Maximum integration duration for electron 2nd
population (see SPIS 5 User Manual) Medium yes

electronSpeedUp double 1 [-]
Numerical times speed-up factor for electron 1st
population Expert yes

electronSpeedUp2 double 1 [-]
Numerical times speed-up factor for electron 2nd
population Expert yes

electronTemperature double 1 [eV] Electron temperature(1st population) Low yes
electronTemperature2 double 100 [eV] Electron temperature(2nd population) Low yes

electronTrajFlag1 int 0 [-]

Plot ambient electron (1st population) trajectory? 0=no,
1=yes.
NB: extra trajectory parameters must be defined Advanced yes

electronTrajFlag2 int 0 [-]
Plot ambient electron (2nd population) trajectory? 0=no,
1=yes Advanced yes

electronVx double 0 [m/s] electron drift velocity along x axis (1st population) Medium yes
electronVx2 double 0 [m/s] electron drift velocity along x axis (2nd population) Medium yes
electronVy double 0 [m/s] electron drift velocity along y axis (1st population) Medium yes
electronVy2 double 0 [m/s] electron drift velocity along y axis (2nd population) Medium yes
electronVz double 0 [m/s] electron drift velocity along z axis (1st population) Medium yes
electronVz2 double 0 [m/s] electron drift velocity along z axis (2nd population) Medium yes

environmentType String BiMaxwellianEnvironment None
Name of the Environment class to be used (see SPIS 5
user manual annex for extended environment) Advanced yes

ionDensity double 1E+06 [m-3] Ion density (1st population) Low yes
ionDensity2 double 1E+06 [#/m3] Ion density (2nd population) Low yes
ionDistrib String BackTrackingVolDistrib None Name of the VolDistrib class to be used for ions Advanced yes

ionDistrib2 String PICVolDistrib None
Name of the VolDistrib class to be used for ions 2nd
population Advanced yes

ionDt double 0.0001 [s]
Maximum integration time step for ion 1st population
(see SPIS 5 User Manual) Medium yes

ionDt2 double 1E-05 [s]
Maximum integration time step for ion 2nd population
(see SPIS 5 User Manual) Medium yes

ionDuration double 0.0001 [s]
Maximum integration duration for ion 1st population
(see SPIS 5 User Manual) Medium yes

ionDuration2 double 1E-05 [s]
Maximum integration duration for ion 2nd population
(see SPIS 5 User Manual) Medium yes

ionSpeedUp double 1 [-] Numerical times speed-up factor for ion 1st population Expert yes
ionSpeedUp2 double 1 [-] Numerical times speed-up factor for ion 2nd population Expert yes
ionTemperature double 1 [eV] Ion temperature (1st population) Low yes
ionTemperature2 double 100 [eV] Ion temperature (2nd population) Low yes
ionTrajFlag1 int 0 [-] Plot ambient ion (1st population) trajectory? 0=no, 1=yes Advanced yes

ionTrajFlag2 int 0 [-]
Plot ambient ion (2nd population) trajectory? 0=no,
1=yes Advanced yes

ionType String H+ None First ion population Low yes
ionType2 String H+ None Second ion population Low yes
ionVx double 0 [m/s] Ion drift velocity along x axis (1st population) Medium yes
ionVx2 double 0 [m/s] Ion drift velocity along x axis (2nd population) Medium yes
ionVy double 0 [m/s] Ion drift velocity along y axis (1st population) Medium yes
ionVy2 double 0 [m/s] Ion drift velocity along y axis (2nd population) Medium yes
ionVz double 0 [m/s] Ion drift velocity along z axis (1st population) Medium yes
ionVz2 double 0 [m/s] Ion drift velocity along z axis (2nd population) Medium yes

iterativePusherAbsTolPos double 1E-05 [m]
precision of iterative particle pusher (RKCK method):
absolute tolerance position Expert yes

iterativePusherAbsTolVelo double 1E+12 [m/s]
precision of iterative particle pusher (RKCK method):
absolute tolerance velocity Expert yes

iterativePusherRelTolPos double 0.001 None
precision of iterative particle pusher (either RKCK or
dichotomy method): relative tolerance position Expert yes

iterativePusherRelTolVelo double 0.001 None
precision of iterative particle pusher (RKCK method):
relative tolerance velocity Expert yes

lmvdSubType String uniform None

sub-type of the LocalMaxellVolDistrib if an ion/elec
distrib is declared LocalMaxellVolDistrib. It can be
'uniform', 'linear', 'stepwise', 'constant-linear' or 'bubble'
(see in LocalMaxwellVolDistrib source for details) Expert yes

maxwellEnergySamplerFactor double 1.3 None
spacing geometric factor of the maxwellian energy
sampler Advanced yes

maxwellEnergySamplerPointNb int 100 None number of points of the maxwellian energy sampler Advanced yes
maxwellEnergySamplerSpacing double 0.01 None first spacing of the maxwellian energy sampler [eV] Advanced yes

In addition, since SPIS 5, generic distributions functions are available (kappa, ASCII tabulated files) : see SPIS 5 user manual annex “Advanced
uses for scientific applications”). They are set with new parameters referred as pop# in next table where #is the index of the generic distributrions,
which extend the bi-maxwellian environment of SPIS 4.

Name Type Default Value Unit Description
Expertise

Level In use

environmentType String BiMaxwellianEnvironment None

Name of the Environment class to be used
(see SPIS 5 user manual annex for extended
environment) Advanced yes

ExtendedPopNbr int 0 None
if environmentType = ExtendedEnvironment,
number of extended populations Advanced yes

pop1Density double 0 [m-3] Population density Advanced yes

pop1DF_FileName String None [-]
name of the file describing the population
distribution function in the environment Advanced yes

pop1DFBasis_Vect1_X double 1 [-]
x coordinate of Vect1 defining the basis of the
population distribution function Advanced yes

pop1DFBasis_Vect1_Y double 0 [-]
y coordinate of Vect1 defining the basis of the
population distribution function Advanced yes

pop1DFBasis_Vect1_Z double 0 [-]
z coordinate of Vect1 defining the basis of the
population distribution function Advanced yes

pop1DFBasis_Vect2_X double 0 [-]
x coordinate of Vect2 defining the basis of the
population distribution function Advanced yes

pop1DFBasis_Vect2_Y double 1 [-]
y coordinate of Vect2 defining the basis of the
population distribution function Advanced yes

pop1DFBasis_Vect2_Z double 0 [-]
z coordinate of Vect2 defining the basis of the
population distribution function Advanced yes

pop1Distrib String PICVolDistrib [-] distribution type of 1st extended population Advanced yes

pop1Dt double -1 [s]
Maximum integration time step for 1st
extended population Advanced yes

pop1Duration double 0 [s]
Maximum integration duration for 1st
extended population Advanced yes

pop1EnvironmentDF String IsotropicMaxwellianDF [-]
Population distribution function in the
environment Advanced yes

pop1Kappa double 9 [-]
Population kappa parameter (if kappa
distribution) Advanced yes

pop1Optimization double 0 [-]

optimize population statistics by injecting new
particles. Example: if 0.5 => add 50 % of
optimized particles to the original list Advanced yes

pop1OptimizationMode double 1 [-] if pop1Optimization is positive, mode of Advanced yes

statistics collection ? 1 : after particle
integration; 2 : during particle integration

pop1SEEFlag int 0 [-]

secondary Emission Flag Under Electron or
Proton Impact: bits go by groups of 3
(bit0=on/off,
bit1=simulate_secondary_elec_dynamics/don't,
bit2=allow_secondaries_of-secondaries/don't) Advanced yes

pop1SpeedUp double 1 [-]
Numerical times speed-up factor for
population Advanced yes

pop1Temperature double 1 [eV] Population temperature (if isotropic) Advanced yes
pop1TrajFlag int 0 [-] plot population trajectory ? 0=no, 1=yes Advanced yes
pop1Tx double 0 [eV] Population temperature along x axis Advanced yes
pop1Ty double 0 [eV] Population temperature along y axis Advanced yes
pop1Type String H+ None Population type Advanced yes
pop1Tz double 0 [eV] Population temperature along z axis Advanced yes
pop1Vx double 0 [m/s] Population drift velocity along x axis Advanced yes
pop1Vy double 0 [m/s] Population drift velocity along y axis Advanced yes
pop1Vz double 0 [m/s] Population drift velocity along z axis Advanced yes

pusherThreadNb int 4 None Number of parallel particle pushers Low
since

SPIS5

Back to top.

MultiZone
This section describes the fine tuning parameters for the MultiZone modelling (HybridMZVolDistrib) of a population.
They should only be modified by Advanced users.
Beyond the short description below, the Advanced user can find a detailed effect of these parameters in the source code of HybridMZVolDistrib.

Name Type
Default
Value

Unit
 Description

Expertise
Level In use

hmzvdPoissonVlasovLoopNb int 3 None
number of Poisson-Vlasov loops within each jCL factor adjusting iteration in a
HybridMZVolDistrib Expert yes

jclfAdjustLoopNb int 3 None number of loops for adjusting jCL factor within a HybridMZVolDistrib Expert yes
jclfCVSpeed double 1 None convergence speed for jCL factor Expert yes

jclfExtractingFieldWeight double 1 None
weighing factor for the presence of an extracting electric field at boundary between
zones, which leads to a jCLfact increase Expert yes

jclfLowerBound double 0.01 None Lower bound for jCL factor Expert yes

jclfPosChargeWeight double 1 None
weighing factor for the presence of positive space charge in a positive sheath, which
leads to jCLfact reduction to avoid instabilities Expert yes

jclfReattractingFieldWeight double 1 None
weighing factor for the presence of a re-attracting electric field at boundary between
zones, which leads to a jCLfact reduction Expert yes

jclfSmoothing double 1 None smoothing strengh for jCL factor at each iteration Expert yes
jclfUpperBound double 100 None upper bound for jCL factor Expert yes

neLowerBoundCoeff double 1 None
coefficient ruling the Lower boundary on Ne estimate for jTh computation: small =>
less constraint, big => ne close to ni Expert yes

zoneBdElecDensification double 1 None
densification coefficient (increases superparticle number, decreasing their weight) for
PIC electrons emitted at zone boundary Expert yes

Back to top.

Poisson equation

Poisson boundary conditions are:
- always Dirichlet on the spacecraft (fixed potential), the initial potential being controlled by the global parameter initPotFlag (spacecraft section)

and possibly defined locally (see the local parameters)
- Fourier on the external boundary (mixed Dirichlet-Neumann) with parameters defined so as to give an asymptotic behaviour in r-n. Dirichlet is

also possible on the external boundary (this eliminates the observed detrimental interactions at an edge between Fourier BCs on two nearby
external surfaces when one of the Fourier is used to mimic a quasi Dirichlet BC).

They are controlled by the poissonBCType parameter.

The non-linear Poisson equation includes one (or two) Maxwellian distributions of electrons:

-Δφ = e(ni - ne1 ee
φ
/kTe1) / ε0 or -Δφ = e(ni - ne1 ee

φ
/kTe1 - ne2 ee

φ
/kTe2) / ε0

where e ni is the total charge density of other particles (usually PIC-modelled ions, but possibly also other PIC-modelled electrons), and nex is the
electrons density of the x-th electron distribution (a scalar, contrarily to ni which is a field) and Tex its temperature.
If the non linear solver is selected (linearPoisson = 0), the Boltzmann electron distribution(s) of the environment (Plasma section above) are
automatically inserted in the non-linear Poisson solver (but not electron distributions that you defined as PIC, which are handled like ions in the above
non-linear equation).
The non-linear Poisson solver follows an implicit scheme (Newton type), which has the major advantage to be stable even for cells larger than Debye
length.

The next parameters, controlling the maximum iteration number or tolerance of the conjugate gradient Poisson equation solver, are rather for
specialists.

Name Type
Default
Value Unit Description

Expertise
Level In use

iterGradient int 1000 None Maximum iteration number for conjugate gradient Poisson Solver Expert yes
iterGradientNl int 1000 None Maximum iteration number for conjugate gradient non-linear Poisson Solver Expert yes
iterLinearSys int 10000 None Maximum iteration number for linear system solver (used for capacitance matrix inversion) Expert yes
iterNewton int 100 None Maximum iteration number for Newton algorithm in non-linear Poisson solving Expert yes

linearPoisson int 0 None

if 1 linear Poisson solver, if 0 non-linear.
0- no: use non-linear Poisson equation solver (implicit Newton scheme):

-∆Φ = [qi ni – e ne1 exp(eΦ/kTe1) – e ne2 exp(eΦ/kTe2)] / ε0
where ne1 = first electronDensity if a Boltzmann electron distribution is selected (same for 2nd
distribution). It can use a truncated electron exponential instead, depending on electron
GlobalMaxwellBoltzmannVolDistrib subtype

1- yes: use linear Poisson solver:
-∆Φ = (qi ni – e ne) / ε 0

the local electron density ne being possibly computed through a Boltzmann law (if selected), but
computed with the old potential (i.e. not taking into account its evolution in the equation
solving)

NB: this distinction is meaningless if no Boltzmann distribution is selected => SPIS-NUM shifts to
linear and emits a warning
NB: in case of small Debye length (smaller than cell size), only non-linear solver is stable. Advanced yes

neutrality int 0 None

neutrality switch, 0=off => regular Poisson computation, 1=on => imposes neutrality instead of
solving Poisson.
If on (neutrality = 1), imposes neutrality instead of solving Poisson: qi ni – e ne1 exp(eΦ/kTe1)
Only the first ambient electron density is considered, and it must be defined as an
UnlimitedGlobalMaxwellBoltzmannVolDistrib (if a PICVolDistrib its PIC density would be taken
into account)
If off (neutrality = 0), regular Poisson computation Expert yes

poissonBCParameter1 double 0 [varies] Parameter that can be used by some BC types (e.g. 1/rn exponent) Advanced yes
poissonBCParameter2 double 0 [varies] 2nd parameter that can be used by some BC types Advanced yes

poissonBCType int 2 None

Poisson boundary conditions type. Defines Fourier (alpha pot + d(pot)/dn = value) or Dirichlet
boundary condition (pot = value) on computation box external boundary:
0- Use the BC defined as fields through plasma group editor (BdFourAlpha and BdFourValue

Fourier BC; or BdDiriPot Dirichlet BC)
1- alpha parameter mimicking a 1/r decay (~vacuum)
2- alpha parameter mimicking a 1/r2 decay (~pre-sheath)
3- alpha parameter mimicking a 1/rn decay, n being next parameter (poissonBCParameter1)
NB: in any case, BC are Dirichlet on SC, defined by local plasma parameter SCDiriPot Advanced yes

tolGradient double 0.0001 [-] Tolerance for conjugate gradient Poisson Solver Expert yes

tolGradientNl double 0.0001 [-] Tolerance for conjugate gradient Poisson Solver when non-linear solving Expert yes

tolLinearSys double 1E-08 [-]

Tolerance for linear system solver (used for capacitance matrix inversion).
May have to be further reduced when strongly multiscale SC mesh is used (resulting in very
variable areas and capacitances of elements). If not, local surface potential is not solved on the
smallest surface elements. Expert yes

tolNewton double 0.02 [-] Tolerance for Newton algorithm loop in non-linear Poisson solving Expert yes

vacuum int 0 None
flag for vacuum computation (0=off, 1=on), if on and linearPoisson is on solves Laplace equation,
if on and linearPoisson is off only sets ion space charge to zero in Poisson eq. Expert yes

variableTe int 0 None

flag to use a variable Te in Boltzmann equation (physically meaningless), 0=off, 1=on.
If on (variableTe = 1) and neutrality is on, the temperature used in Boltzmann distribution in
neutrality equation is derived from

kB Te ne
–γ+1 = constant

NB: plugging this adiabatic law directly in Boltzmann distribution like this is physically wrong
(one must go back to Boltzmann distribution derivation), but it was implemented for comparison to
other codes, where this is sometimes done. Expert yes

variableTeConstant double 1

[eV.m3(γ-1)]
i.e. computed from
kBTe in [eV] and ne in
[m-3],
but not checked by
the code (user can fill
in any unit) constant in the variable Te law Expert yes

variableTeGamma double 1.1 [-] gamma adiabatic exponent in the variable Te law Expert yes

Back to top.

B field

A uniform B field can be defined this way.

Name Type
Default
Value Unit Description

Expertise
Level In use

Bx double 0 [T] x-component of the magnetic field (uniform over the computation box) Low yes
By double 0 [T] y-component of the magnetic field Low yes
Bz double 0 [T] z-component of the magnetic field Low yes

magnetizedPlasmaFlag int 1 [T]
flag for taking account the effect of the magnetic field and of the magnetically induced electric field
(due to spacecraft motion) on particle trajectories. 1: yes; 0: no (un-magnetized plasma) Medium

since
SPIS5

NB: like in many domains, the solver can indeed handle more general situations, here a local B field, the restriction to a uniform B field coming from
the UI only. A dipolar B field can thus e.g. easily be handled by coding it in the software (the only work is to generate such a local map; solvers are
then apt to use it directly).

Back to top.

Spacecraft

If electricCircuitIntegrate = 0, spacecraft potentials are constant, if electricCircuitIntegrate = 1, the spacecraft floats, the relative capacitances being derived
from material properties, whereas the spacecraft absolute capacitance is defined by the parameter CSat.
See Spacecraft circuit description for details on circuit model.

Since SPIS 5, it is possible to apply an orbital velocity directly to the spacecraft instead of applying the opposite velocity to the plasma. In general, the
two approaches are strictly identical, except when there is a magnetic field since it induces a VcrossB electric field on spacecraft surface. In this case,
the VcrossBfield is calculated by using the scveloX,Y,Z, which define the velocity components of the spacecraft in the (possibly drifting) plasma
referential frame. As e.g., for a spacecraft flowing at -100 km/s wrt to a referential at rest, and a plasma drifting at 400 km/s wrt to the same referential
at rest : scVeloX = -500 km/s in the referential of the drifting plasma. When using this parameter, it is unecessary to use the "popVx" parameters
(except to add some population extra velocity vs drift velocity).

Name Type
Default
Value Unit Description

Expertise
Level In use

circuitSolverMode int 0 None flag to define the circuit solver mode: 0 => implicit solver, 1 => explicit solver Expert no

CSat double 1E-06 [F]

Spacecraft absolute capacitance.
It represents the capacitive coupling between spacecraft and infinity (the capacitance electrodes are
the spacecraft and its sheath).
This capacitance is spread over all electric nodes proportionally to their areas, i.e. split into several
capacitors between infinity and the electric nodes grounds (as is the real capacitive coupling in
space).
An alternative is to define a negative Csat = -x. The absolute capacitance used is then x (positive),
and it is plugged between infinity and spacecraft ground only (electric node 0) in that case. It can
sometimes be useful.
See Spacecraft circuit description. Low yes

electricCircuitFilename String circuit.txt None

File name of extra electric devices (RLCV).
Name of the file describing extra electric devices between electric (super-)nodes.
See below for syntax of circuit file.
The file must be in the "SpisUI/defaultValues" directory (if no project loaded) or your project Low yes

directory (subfolder NumKernel/Input)
electricCircuitIntegrate int 1 None SC electric circuit integration: 0=no change, 1=floating Medium yes

exactCSat double 0 [-]

flag to ask for an exact computation of spacecraft capacitance (if > 0).
More precisely Gauss theorem (integral Poisson equation) is used at each time step to determine
the SC potential so as to insure exact charge conservation (a variable Csat is derived from that) Advanced yes

implicitCircuitSolver int 0 None
type of linear system solver used in case of implicit circuit solver; 1: Gauss method; 0: Conjugate
Gradient Squared (recommended) Advanced

since
SPIS5

initPot double 0 [V] initial potential Medium yes

initPotFlag int 1 None
flag to define initial pot: 0 => set to 0, 1 => set to global initPot, 2 => set to local potential defined
as SC Dirichlet condition Medium yes

scVeloCrossBFlag int 1 [-]
flag to take account the effect induced by the spacecraft drift on the spacecraft surface potential (in
the reference frame of the plasma) Advanced

since
SPIS5

scVeloX double 0 [m/s]

x-component of the spacecraft velocity in the reference frame of the plasma. E.g., for a spacecraft
flowing at -100 km/s wrt to a referential at rest, and a plasma drifting at 400 km/s wrt to the same
referential at rest : scVeloX = -500 km/s in the referential of the drifting plasma. When using this
parameter, it is unecessary to use the "popVx" parameters (except to add some population extra
velocity vs drift velocity). Advanced

since
SPIS5

scVeloY double 0 [m/s] y-component of the spacecraft velocity in the reference frame of the plasma. See above. Advanced
since

SPIS5

scVeloZ double 0 [m/s] z-component of the spacecraft velocity in the reference frame of the plasma. See above. Advanced
since

SPIS5

smoothingI double 0 None
strength of spacecraft surface intensity smoothing at each step (1.0 => 1 step on nearest elements,
can be smaller or larger than 1.0) Advanced

since
SPIS5

smoothingPot double 2 [-] strength of spacecraft surface potential smoothing at each step Advanced yes
validityRenormalisation double 0.5 [-] Scaling parameter to globally renormalise validity of scalable currents Low yes

Circuit file syntax
The file describing the electric circuit is composed of an arbitrary number of lines, each with the syntax:

componentDescriptor node1Id node2Id value
with:
- componentDescriptor (a string) one of

- C : it is a capacitor of capacitance value
- R : it is a resistor of resistance value
- V : it is a voltage generator of potential difference value (Vnode2 = Vnode1 + value)

- node1Id and node2Id (integers): the Ids of the (super) electric nodes between which to plug the component (same Id as in ElecNodeId)
- value (a float): the value of the component (resistance…)
Example file :

V 0 1 -10
R 0 2 1.e6

C 0 3 1.e-10
C 2 3 1.e-10

- line 1: Electric super node 1 is biased of -10 V with respect to node 0, which is SC ground (it may be a Langmuir probe).
- line 2: Electric super node 2 is related by a 1 MΩ resistor to SC ground (it may be a solar array).
- line 3: Electric super node 3 is not related by any "real" component to SC ground, so it was chosen to model its capacitive coupling to the ground

(this is not necessary, a fraction of SC absolute capacitance CSat is attributed to each electric node, proportionally to its area, so that it does not
have zero capacitance, resulting in infinite potential as soon as it collects some charge).

- line 4: the capacitive coupling between nodes 2 and 3 has been added (seldom useful).

Back to top.

Particle sources on spacecraft

These parameters allow the embedding of a plasma sources on the spacecraft (e.g. a thruster). Several sources are allowed, currently 4, but their
number can easily be increased by modifying DefaultGlobalParam.py in SpisUI/DefaultValues folder.
Each source is controlled by the following global parameters, which allow turning the source on, defining the source class and particle type. The
general rules for the sourceType parameter, which defines the source class, is:
- this class must derive from the class NonPicSurfDistrib
- have a specific constructor including the UI-defined parameters as described in "Writing UI-supported classes" page and in

..\API\public\spis\Surf\SurfDistrib\NonPICSurfDistrib.html
- in practice as of today LocalMaxwellSurfDistrib, AxisymTabulatedVelocitySurfDistrib, TwoAxesTabulatedVelocitySurfDistrib, FowlerNordheimSurfDistrib and

MaxwellianThruster are supported.
Extra local parameters allow to switch locally between the sources (sourceId), and to define their parameters (current, temperature, Mach number). It
is up to the source model to use or not these local parameters. They will usually use the local source current density, but local temperature and Mach
number were really designed for Maxwellian sources and may not be used by others (AxisymTabulatedVelocitySurfDistrib and
TwoAxesTabulatedVelocitySurfDistrib use angular distributions defined in files, while FowlerNordheimSurfDistrib is self contained).

Multi-species/multi-sources on the same location are also supported. The rules to perform that are:
- declare sourceTypeX of source number X as a MultipleSurfDistrib
- define the number sourceNbX of its so-called "sub sources" (sourceX.Y is the Yth sub source of sourceX)
- extra global parameters (sourceCurrentFactorX.Y, sourceTempFactorX.Y and sourceMachFactorX.Y) are used to define the multiplication factor to
apply to local parameters (current, temperature, Mach number) which are initially defined for sourceX.

Name Type Default Value Unit Description
Expertise

Level In use

fieldFactor double 1 [-]
field factor enhancement for Fowler-Nordheim sources (usually named
beta) Advanced

sourceCurrentFactor1.1 double 1 None
Multiplication factor defining the current of sub source No 1 of source No
1 with respect to source No 1 Advanced

sourceCurrentFactor1.2 double 1 None
Multiplication factor defining the current of sub source No 2 of source No
1 with respect to source No 1 Advanced

sourceCurrentFactor1.3 double 1 None
Multiplication factor defining the current of sub source No 1 of source No
1 with respect to source No 1 Advanced

sourceCurrentFactor1.4 double 1 None
Multiplication factor defining the current of sub source No 2 of source No
1 with respect to source No 1 Advanced yes

sourceDt1 double -1 [s]
Maximum integration time step for particles from 1st source (see SPIS5
User Manual) Advanced yes

sourceDt1.1 double -1 [s]
Maximum integration time step for particles from sub source No 1 of
source No 1 (automatic if negative) Advanced yes

sourceDt1.2 double -1 [s]
Maximum integration time step for particles from sub source No 2 of
source No 1 (see SPIS5 User Manual) Advanced yes

sourceDt1.3 double -1 [s]
Maximum integration time step for particles from sub source No 1 of
source No 1 (see SPIS5 User Manual) Advanced yes

sourceDt1.4 double -1 [s]
Maximum integration time step for particles from sub source No 2 of
source No 1 (see SPIS5 User Manual) Advanced yes

sourceDt2 double -1 [s]
Maximum integration time step for particles from 2nd source (see SPIS5
User Manual) Advanced

sourceDt3 double -1 [s]
Maximum integration time step for particles from 3rd source (see SPIS5
User Manual) Advanced yes

sourceDt4 double -1 [s]
Maximum integration time step for particles from 4th source (see SPIS5
User Manual) Advanced yes

sourceDuration1 double 0 [s]
Maximum integration duration for particles from 1st source (automatic if
0) Advanced yes

sourceDuration1.1 double 0 [s]
Maximum integration duration for particles from sub source No 1 of
source No 1 (automatic if 0) Advanced yes

sourceDuration1.2 double 0 [s]
Maximum integration duration for particles from sub source No 2 of
source No 1 (automatic if 0) Advanced yes

sourceDuration1.3 double 0 [s]
Maximum integration duration for particles from sub source No 1 of
source No 1 (automatic if 0) Advanced yes

sourceDuration1.4 double 0 [s]
Maximum integration duration for particles from sub source No 2 of
source No 1 (automatic if 0) Advanced yes

sourceDuration2 double 0 [s]
Maximum integration duration for particles from 2nd source (automatic if
0) Advanced yes

sourceDuration3 double 0 [s]
Maximum integration duration for particles from 3rd source (automatic if
0) Advanced yes

sourceDuration4 double 0 [s] Maximum integration duration for particles from 4th source (automatic if Advanced

0)

sourceFlag1 double 0 [-]
Flag for defining artificial source No 1 on the spacecraft: 0 => none, 1 =>
yes, x => number of super-particles densified by x Advanced yes

sourceFlag1.1 double 0 [-]

Flag for defining artificial sub source No 1 of source No 1 on the
spacecraft (source1.1): 0 => none, 1 => yes, x => number of super-
particles densified by x Advanced

sourceFlag1.2 double 0 [-]

Flag for defining artificial sub source No 2 of source No 1 on the
spacecraft (source1.2): 0 => none, 1 => yes, x => number of super-
particles densified by x Advanced yes

sourceFlag1.3 double 0 [-]

Flag for defining artificial sub source No 3 of source No 1 on the
spacecraft (source1.1): 0 => none, 1 => yes, x => number of super-
particles densified by x Advanced yes

sourceFlag1.4 double 0 [-]

Flag for defining artificial sub source No 4 of source No 1 on the
spacecraft (source1.2): 0 => none, 1 => yes, x => number of super-
particles densified by x Advanced yes

sourceFlag2 double 0 [-]
Flag for defining artificial source No 2 on the spacecraft: 0 => none, 1 =>
yes, x => number of super-particles densified by x Advanced yes

sourceFlag3 double 0 [-]
Flag for defining artificial source No 3 on the spacecraft: 0 => none, 1 =>
yes, x => number of super-particles densified by x Advanced yes

sourceFlag4 double 0 [-]
Flag for defining artificial source No 4 on the spacecraft: 0 => none, 1 =>
yes, x => number of super-particles densified by x Advanced yes

sourceMachFactor1.1 double 1 None
Multiplication factor defining the mach number of sub source No 1 of
source No 1 with respect to source No 1 Advanced yes

sourceMachFactor1.2 double 1 None
Multiplication factor defining the mach number of sub source No 2 of
source No 1 with respect to source No 1 Advanced yes

sourceMachFactor1.3 double 1 None
Multiplication factor defining the mach number of sub source No 1 of
source No 1 with respect to source No 1 Advanced

sourceMachFactor1.4 double 1 None
Multiplication factor defining the mach number of sub source No 2 of
source No 1 with respect to source No 1 Advanced yes

sourceNb int 4 None Number of particle sources: not to be modified in UI. Advanced yes

sourceNb1 int 0 None
Number of particles sources of the multi-source 1 (if source 1 is a
MultipleSurfDistrib). Nb: create extra parameters for these sub sources Advanced yes

sourceNb2 int 0 None
Number of particles sources of the multi-source 2 (if source 2 is a
MultipleSurfDistrib). Nb: create extra parameters for these sub sources Advanced yes

sourceNb3 int 0 None
Number of particles sources of the multi-source 3 (if source 3 is a
MultipleSurfDistrib). Nb: create extra parameters for these sub sources Advanced yes

sourceNb4 int 0 None
Number of particles sources of the multi-source 4 (if source 4 is a
MultipleSurfDistrib). Nb: create extra parameters for these sub sources Advanced

sourceParticleType1 String Xe+ None
Type of particles emitted by source 1 (a string that must be found in the
particle types) Advanced yes

sourceParticleType1.1 String electron None Type of particles emitted by sub source No 1 of source No 1 Advanced

sourceParticleType1.2 String electron None Type of particles emitted by sub source No 2 of source No 1 Advanced yes
sourceParticleType1.3 String electron None Type of particles emitted by sub source No 3 of source No 1 Advanced yes
sourceParticleType1.4 String electron None Type of particles emitted by sub source No 4 of source No 1 Advanced yes
sourceParticleType2 String electron None Type of particles emitted by source 2 Advanced yes
sourceParticleType3 String Cs+ None Type of particles emitted by source 3 Advanced
sourceParticleType4 String In+ None Type of particles emitted by source 4 Advanced yes
sourceSpeedUp1 double 1 [-] Numerical times speed-up factor for 1st source population Advanced yes
sourceSpeedUp1.1 double 1 [-] Numerical times speed-up factor for sub source No 1 of source No 1 Advanced yes
sourceSpeedUp1.2 double 1 [-] Numerical times speed-up factor for sub source No 1 of source No 1 Advanced yes
sourceSpeedUp1.3 double 1 [-] Numerical times speed-up factor for sub source No 1 of source No 1 Advanced yes
sourceSpeedUp1.4 double 1 [-] Numerical times speed-up factor for sub source No 1 of source No 1 Advanced yes
sourceSpeedUp2 double 1 [-] Numerical times speed-up factor for 2nd source population Advanced
sourceSpeedUp3 double 1 [-] Numerical times speed-up factor for 3rd source population Advanced yes
sourceSpeedUp4 double 1 [-] Numerical times speed-up factor for 4th source population Advanced yes

sourceTempFactor1.1 double 1 None
Multiplication factor defining the temperature of sub source No 1 of
source No 1 with respect to source No 1 Advanced yes

sourceTempFactor1.2 double 1 None
Multiplication factor defining the temperature of sub source No 2 of
source No 1 with respect to source No 1 Advanced yes

sourceTempFactor1.3 double 1 None
Multiplication factor defining the temperature of sub source No 1 of
source No 1 with respect to source No 1 Advanced yes

sourceTempFactor1.4 double 1 None
Multiplication factor defining the temperature of sub source No 2 of
source No 1 with respect to source No 1 Advanced yes

sourceTrajFlag1 int 0 None
plot source 1 trajectory (and sub sources if any)? 0=no, 1=yes. NB: in the
case source 1 is a multiple source, plot trajectories of each PIC sub source. Advanced yes

sourceTrajFlag2 int 0 None plot source 2 trajectory (and sub sources if any)? 0=no, 1=yes Advanced yes
sourceTrajFlag3 int 0 None plot source 3 trajectory (and sub sources if any)? 0=no, 1=yes Advanced yes
sourceTrajFlag4 int 0 None plot source 4 trajectory (and sub sources if any)? 0=no, 1=yes Advanced yes

sourceType1 String LocalMaxwellSurfDistrib None

Name of the SurfDistrib class to be used on the spacecraft as source No 1.
(ex: LocalMaxwellSurfDistrib, which will use the source flux, source
temperature and source Mach user-defined local fields, whereas a specific
EP model could only use the source flux and define internally its velocity
distribution, see above) Advanced yes

sourceType1.1 String AxisymTabulatedVelocitySurfDistrib None
Name of the SurfDistrib class to be used on the spacecraft as sub source
No 1 of source No 1 Advanced yes

sourceType1.2 String MaxwellianThruster None
Name of the SurfDistrib class to be used on the spacecraft as sub source
No 2 of source No 1 Advanced yes

sourceType1.3 String FowlerNordheimSurfDistrib None
Name of the SurfDistrib class to be used on the spacecraft as sub source
No 3 of source No 1 Advanced yes

sourceType1.4 String TwoAxesTabulatedVelocitySurfDistrib None Name of the SurfDistrib class to be used on the spacecraft as sub source Advanced yes

No 4 of source No 1
sourceType2 String MaxwellianThruster None Name of the SurfDistrib class to be used on the spacecraft as source No 2 Advanced yes
sourceType3 String LocalMaxwellSurfDistrib None Name of the SurfDistrib class to be used on the spacecraft as source No 3 Advanced
sourceType4 String LocalMaxwellSurfDistrib None Name of the SurfDistrib class to be used on the spacecraft as source No 4 Advanced yes

Back to top.

Surface interactions

Surface interactions are related to a population of particle, the one at the origin of the interaction (possibly with a specific handling as for
photoemission).
They may or may not also be a source of particles (secondary emission does, but Radiation Induced Conductivity does not).

From the user viewpoint there are two types of interactions:
- a list of predefined interactions (photo-emission, SEE under electron impact, SEE under proton impact, erosion…)
- interactions handled on a generic basis, with the possibility to easily define new ones (since SPIS V4, only CathodeSpot is implemented)
They are described in the two subsections below.
A specific paragraph on the presence of a potential barrier on top of a sunlit surface (important for GEO charging) is to be found at the end of the first
subsection.

Predefined surface interactions

These parameters are mostly flags to turn interactions on or off, see their definition in the table below.
For the definition of the interactions, see the classes implementing the interaction:
- Photo-emission: BasicPhotoEmInteractor
- Secondary emission from electrons: BasicSEEEInteractor, SEEEYieldFunction1, ElecBackscatterFunction
- Secondary emission from protons: BasicSEEPInteractor, SEEPYieldFunction1
- Induced conductivity: BasicInducedConductInteractor
- Erosion: ErosionInteractor, GRBOErosionYield, TonduErodedProductSampler
When invoked from UI, these Interactors use a GenericParamSet (since v4.3) witch is composed by a:
- Nascap Parameters for materials, described in NascapParamSet
- Erosion Parameters for materials, described in ErosionParamSet
with the database of built-in materials in SpisDefaultMaterials or using extended NASCAP based materials (since v4.3, see Material Properties).

When photoemission is turned on, the photoelectron current density on illuminated surfaces is calculated as a function of the distance to the Sun.
SunX, SunY and SunZ define both the direction of the Sun and the amplification factor wrt the reference flux at 1 AU. (e.g.: SunX=2, SunY = 0,
SunZ = 0, will consider a Sun in X direction with a flux multiplied by 2 wrt to conditions at 1 AU).

Name Type
Default
Value Unit Description

Expertise
Level In use

electronSecondaryDensification double 1 [-] densification coefficient for secondary electron superparticles (from electron impact) Medium yes

electronSecondaryEmission int 3 None

Bits go by groups of 3 :
- bit 0: turn on secondary emission under electron impact (if 1),
- bit 1: simulate secondary electron dynamics by PIC model (if 1),
- bit 2 = model secondary emission form secondary electrons ("hoping")
Six groups of 3 bits are used, successively for:
- ambient electron population 1
- ambient electron population 2
- source 1
- source 2
- source 3
- source 4
Examples:
- binary 011011 = decimal 30 => model secondary emission from both ambient

populations, with secondary electron dynamics but no secondaries from
secondaries

- binary 111000000 = decimal 448 => model secondary emission from source 1
electrons with secondary electron dynamics and secondaries from secondaries
("hoping")

NB: in the code, when turned on, the hoping is simulated by a second interactor,
which is differentiated from the first interactor for primary electrons in the
emittedCurrents.txt file.
NB: when secondary emission is turned on for a multipleSurfDistrib source, it is
turned on for each electron sub source. Medium yes

electronSecondaryEmissionTrajFlag int 0 None plot secondary electron trajectory? 0=no, 1=yes Advanced yes
electronSecondaryTemperature double 2 [eV] secondary electron temperature (from electron impact) Medium yes

erosion int 0 None

bits go by groups of 3 (bit0=on/off, bit1=eroded_products_dynamics/don t,
bit2=unused), while groups of 3 bits are for ambient population 1, ambient
population 2, source 1, source 2, source 3 and source 4 resp.
Similarly to electronSecondaryEmission, bits go by groups of 3 :
- bit 0: turn on erosion (if 1),
- bit 1: simulate eroded products dynamics by PIC model (if 1),
- bit 2 = unused
Six groups of 3 bits are used, successively for:
- ambient ion population 1 Medium yes

- ambient ion population 2
- source 1
- source 2
- source 3
- source 4
Ex: all on = 011011011011011011 =112347 (or 111111111111111111 = 218-1 =
262143)
NB: when erosion is turned on for a multipleSurfDistrib source, it is turned on for
each ion sub source.

erosionProductDensification double 1 [-] densification coefficient for erosion product superparticles Medium yes
erosionProductDt double -1 [s] Maximum integration time step for erosion products (see SPIS 5 User Manual) Medium yes
erosionProductDuration double 0 [s] Maximum integration duration for erosion products (see SPIS 5 User Manual) Medium yes
erosionProductSpeedUp double 1 [-] Numerical times speed-up factor erosion products Expert yes
erosionProductsTrajFlag int 0 None plot erosion products trajectory? 0=no, 1=yes Medium yes
inducedConductivity int 1 None if 0 no induced conductivity, if 1 induced conductivity turned on Medium yes
photoElectronDensification double 1 [-] densification coefficient for photo electron superparticles Medium yes
photoElectronTemperature double 2 [eV] photo-electron temperature Medium yes
photoElectronTrajFlag int 0 None plot photo electron trajectory? 0=no, 1=yes Advanced yes

photoEmission int 3 None

- if 0, no photo-emission
- if 1, photo-emission is turned on with the sun direction defined below (from sun

vector (sunX...), no shading for now)
- if 3, photo-emission is turned on with the sun direction defined below (from sun

vector (sunX...)) and photo-electron dynamics is modelled (PIC)
- if 5, photo-emission is turned on with a sun flux defined locally (local parameter

sunFlux)
- if 7, photo-emission is turned on with a sun flux defined locally (local parameter

sunFlux)and photo-electron dynamics is modelled (PIC)
NB: these values stem for a bit per bit definition: bit0 => on/off, bit1 => dynamics of
photo-electrons is modelled / not, bit2 => sun flux locally defined / from sun
direction (e.g. all on => binary 111 = decimal 7) Low yes

protonSecondaryDensification double 1 [-] densification coefficient for secondary electron superparticles (from proton impact) Medium yes
protonSecondaryEmission int 3 None if 0, no secondary emission, if 1, secondary emission turned on Medium yes
protonSecondaryTemperature double 2 [eV] secondary electron temperature (from proton impact) Medium yes

secondaryDt double 1E-06 [s]
Maximum integration time step for all types of secondary electrons (see SPIS 5 User
Manual) Expert yes

secondaryDuration double 1E-06 [s]
Maximum integration duration for all types of secondary electrons (see SPIS 5 User
Manual) Expert yes

secondarySpeedUp double 1 [-] Numerical times speed-up factor for all types of secondary electrons Expert yes
sunX double 0 [-] x-component of sun direction, see photoemission documentation Low yes
sunY double 0 [-] y-component of sun direction, see photoemission documentation Low yes

sunZ double 1 [-] z-component of sun direction, see photoemission documentation Low yes
surfaceConductivity int 1 None if 0 no surface conductivity, if 1 surface conductivity turned on Medium yes
volumeConductivity int 1 None if 0 no volume conductivity, if 1 volume conductivity turned on Medium yes

The following parameters are used to turn on (barrierCSFlag) or tune (the next ones, for experts only) the CurrentScaler used by the implicit circuit
solver when a potential barrier shows up on top of a photo-emissive surface.
The regular user should simply turn on this CurrentScaler through barrierCSFlag when such a situation is expected (typically charging in GEO in
sunlight), while the advance user may enter into the source code of the derived classes of CurrentScaler for a more detailed understanding of the
consequences of the tuning parameters.

Name Type
Default
Value Unit Description

Expertise
Level In use

barrierCSFlag int 0 [-]

flag for the current scaler specific to GEO potential barrier phenomenon for
photo/secondary electron recollection (0 = off, 1 = on). To be turned on when
potential barrier typical of GEO is expected. Advanced yes

bcsGlobalFactor double 10 [-]

global temperature factor for the current scaler specific to GEO potential barrier
phenomenon (BarrierCurrentScaler) for photo/secondary electron recollection (for
Expert users only) Expert yes

bcsLocalFactor double 1 [-]

local temperature factor for the current scaler specific to GEO potential barrier
phenomenon (BarrierCurrentScaler) for photo/secondary electron recollection (for
Expert users only) Expert yes

bcsRelValid double 200 [-]

relative validity (relative to temp*bcsLocalFactor) for the current scaler specific to
GEO potential barrier phenomenon (BarrierCurrentScaler) for photo/secondary
electron recollection (for Expert users only) Expert yes

bcsSmoothdIdV int 30 [-]
number of smoothing steps (each step => nearest elements) for dI/dV of recollected
electrons when the barrier current scaler is on (for Expert users only) Expert yes

bcsSmoothI int 0 [-]
number of smoothing steps (each step => nearest elements) for the collected intensity
when the barrier current scaler is on (for Expert users only) Expert yes

bcsSmoothPot int 10 [-]
number of smoothing steps (each step => nearest elements) for the potential when
the barrier current scaler is on (for Expert users only) Expert yes

Generic surface interactions

Extra surface interactions can also be defined generically as a "plug in" class similarly ar for volume distributions, surface sources, etc.
Although only one of these classes was currently implemented (CathodeSpot), extra ones can easily be added as explained in .

The general rules for the interactorType* parameters, which define the model to be used (a class name), are:
- this class must derive from the class Interactor
- have a specific constructor including the UI-defined parameters as described in Surf\SurfInteract\Interactor.html
- in practice in SPIS v4.0 only CathodeSpot is available.

Name Type
Default
Value Unit Description

Expertise
Level In use

interactorDt1 double -1 [s]
Maximum integration time step for particles from first interactor on SC (automatic if
negative) Expert yes

interactorDuration1 double 0 [s]
Maximum integration duration for particles from first interactor on SC (automatic if
0) Expert yes

interactorFlag1 double 0 [-]
flag for defining a first generic interactor on the spacecraft: 0 => none, 1 => yes, x
=> number of super-particles densified by x if relevant Expert yes

interactorNb int 0 None number of interactors Expert yes
interactorParticleType1 String O+ None Type of particles emitted by the first interactor if it is an emitter Expert yes

interactorPopSource1 String electrons1 None

volume population to be used as source of the interaction of this first interactor (must
be one of the predefined volume population names ions1, elec1, source1,
photoElec...) Expert yes

interactorSpeedUp1 double 1 [-] Numerical times speed-up factor for particles from first artificial interactor on SC Expert yes
interactorType1 String CathodeSpot None Name of the first Interactor class to be used for an interactor on the spacecraft Expert yes

User defined interactions

Since SPIS 5, it is possible to define distribution functions of secondary particles, see SPIS5 User Manual annex on “Advanced uses for scientific
applications”.
It leads to define new global parameters:

Back to top.

Volume interactions

These parameters allow to turn interactions on or off, define the type of interaction, the incoming and resulting populations and particle types.

The general rules for the volInteractType parameter, which defines the volume interaction type (class), are:
- this class must derive from the class VolInteractor
- have a specific constructor including the UI-defined parameters as described in "Writing UI-supported classes" page and in

..\API\public\spis\Vol\VolInteract\VolInteractor.html
- in practice as of today only CEXInteractor is implemented.

Name Type Default Value Unit Description
Expertise

Level In use

crossSectionVolInteract1 String 1.0e-18
[m2] or
None

Cross section for 1st volume interaction, either a float (its value [m2])
or the name of the file describing sigma(E). Can be either:
- a float: the value of the cross section σ [m2]
- a String: the name of the file (to be found in your project

NumKernel/Input folder later) where the cross section versus
energy is defined (two ASCII columns E[eV], σ [m2]) (see below
for its format)

The rule is the following: an attempt to traduce this String into a float,
of which success depends the switching to first or second option Advanced yes

crossSectionVolInteract2 String 1.0e-18
[m2] or
None

Cross section for 2nd volume interaction, either a float (its value [m2])
or the name of the file describing sigma(E) Advanced yes

inPart1VolInteract1 String Xe+ None

Type of particles for first interacting population (a string that must be
found in the particle types) for the 1st volume interaction.
NB: may be redundant with the definition of the interacting
population, but has to be defined anyway. Advanced yes

inPart1VolInteract2 String Xe+ None
Type of particles for first interacting population of 2nd volume
reaction Advanced yes

inPart2VolInteract1 String Xe None
Type of particles for second interacting population (a string that must
be found in the particle types) in 1st volume interaction Advanced yes

inPart2VolInteract2 String Xe None
Type of particles for second interacting population of 2nd volume
reaction Advanced yes

inPop1VolInteract1 String source1 None

Defines first interacting population (ions for CEX) of first volume
interaction.
Must be one of:
- source1, source2, source3, source4 (indeed the PICVolDistrib

alimented by source_x), or sourceX.Y
- ions1, ions2, elec1, elec2
- photoElec, secondElec, secondElecUnderProton
to select respectively a population issued from an artificial source, the
ambient plasma, or a surface interaction. Advanced yes

inPop1VolInteract2 String source1 None

Defines first interacting population of 2nd volume reaction (e.g. ions
for CEX), must be one of ions1, ions2, elec1, elec2, source1...
source4, photoElec, secondElec Advanced yes

inPop2VolInteract1 String fractionOfFirstPopSource None

Defines second interacting population (neutrals for CEX) for 1st
volume interaction.
Must be one of:
- source1, source2, source3, source4 (or sourceX.Y, etc.)
- ions1, ions2, elec1, elec2
- photoElec, secondElec, secondElecUnderProton
fractionOfFirstPopSource, which is special feature for CEXInteractor
applied to EP thrusters plume: the first population must be defined
from an artificial source (inPop1VolInteract = source1, source2,
sourceX.Y...) and this second population (of neutrals) will be emitted
on the same SC surfaces, with a flux reduced with respect to the first
one by a factor = parameter1VolInteract, and a uniform temperature
equal to parameter2VolInteract [eV]. So, e.g. for a thruster of
ionisation efficiency of 97% and neutrals emitted at 1160K, simply
define parameter1VolInteract = 0.03 and parameter1VolInteract = 0.1
[eV]. Advanced yes

inPop2VolInteract2 String fractionOfFirstPopSource None

Defines second interacting population of 2nd volume reaction(e.g.
neutrals for CEX), must be one of ions1, ions2, elec1, elec2, source1...
source4, photoElec, secondElec Advanced yes

outPart1VolInteract1 String Xe+ None
Type of particles for first population produced in 1st volume
interaction Advanced yes

outPart1VolInteract2 String Xe+ None
Type of particles for first population produced in 2nd volume
interaction Advanced yes

outPart2VolInteract1 String Xe None

Type of particles for second population produced in 1st volume
interaction.
NB: not used in the current version of CEXInteractor, but might be
later ("fast" neutrals) Advanced yes

outPart2VolInteract2 String Xe None
Type of particles for second population produced in 2nd volume
interaction Advanced yes

outPop1DtVolInteract1 double -1 [s]
Maximum integration time step for first population produced in 1st
volume interaction (automatic if negative) Advanced yes

outPop1DtVolInteract2 double -1 [s]
Maximum integration time step for first population produced in 2nd
volume interaction (automatic if negative) Advanced yes

outPop1DurationVolInteract1 double 0 [s]
Maximum integration duration for first population produced in 1st
volume interaction (automatic if 0) Advanced yes

outPop1DurationVolInteract2 double 0 [s]
Maximum integration duration for first population produced in 2nd
volume interaction (automatic if 0) Advanced yes

outPop1SpeedUpVolInteract1 double 1 [-]
Numerical times speed-up factor for first population produced in 1st
volume interaction Advanced yes

outPop1SpeedUpVolInteract2 double 1 [-]
Numerical times speed-up factor for first population produced in 2nd
volume interaction Advanced yes

outPop1VolInteractTrajFlag int 0 None plot 1st produced population trajectory? 0=no, 1=yes Advanced yes

outPop2DtVolInteract1 double -1 [s]
Maximum integration time step for first population produced in 1st
volume interaction (automatic if negative) Advanced yes

outPop2DtVolInteract2 double -1 [s]
Maximum integration time step for first population produced in 2nd
volume interaction (automatic if negative) Advanced yes

outPop2DurationVolInteract1 double 0 [s]
Maximum integration duration for 2nd population produced in 1st
volume interaction (automatic if 0) Advanced yes

outPop2DurationVolInteract2 double 0 [s]
Maximum integration duration for 2nd population produced in 2nd
volume interaction (automatic if 0) Advanced yes

outPop2SpeedUpVolInteract1 double 1 [-]
Numerical times speed-up factor for first population produced in 1st
volume interaction Advanced yes

outPop2SpeedUpVolInteract2 double 1 [-]
Numerical times speed-up factor for first population produced in 2nd
volume interaction Advanced yes

outPop2VolInteractTrajFlag int 0 None plot 2nd produced population trajectory? 0=no, 1=yes Advanced yes

parameter1VolInteract1 double 0.05 [variable]

1st parameter of 1st volume interactor:
- for CEX : if parameter3VolInteract=0, it is the ratio between neutral
and ion fluxes at source surfaces. Advanced yes

parameter1VolInteract2 double 0.05 [variable] 1st parameter of 2nd volume interactor Advanced yes

parameter2VolInteract1 double 0.1 [variable]
2nd parameter of 1st volume interactor:
- for CEX : temperature of neutrals Advanced yes

parameter2VolInteract2 double 0.1 [variable] 2nd parameter of 2nd volume interactor Advanced yes

parameter3VolInteract1 double 0 [variable]

3rd parameter of 1st volume interactor:
- for CEX: flag to turn on the lambertian distribution (0) or constant
neutral density (1) Advanced yes

parameter3VolInteract2 double 0 [variable] 3rd parameter of 2nd volume interactor Advanced yes

parameter4VolInteract1 double 0 [variable]

4th parameter of 1st volume interactor:
- for CEX: if parameter3VolInteract=1, it is the pressure in default unit
(kg/m/s2) Advanced yes

parameter4VolInteract2 double 0 [variable] 4th parameter of 2nd volume interactor Advanced yes

volInteract1 double 0 None
Flag to turn on 1st volume interaction : 0 => off, 1 => on, x>0 => on,
superparticles densified by x Advanced yes

volInteract2 double 0 None
Flag to turn on 2nd volume interaction: 0 => off, 1 => on, x>0 => on,
superparticles densified by x Advanced yes

volInteractNb int 2 None

Number of volume interactors : not to be modified in UI, but only in
defaultGlobalParam.py if the number of sources is modified in
defaultGlobalParam.py Advanced yes

volInteractType1 String CEXInteractor None

Type of 1st volume interaction, UI-buildable class name derived from
VolInteract.
For now only CEXInteractor is supported (cf also CEX model
documention). That choice has the following consequences:
- inPop1VolInteract are the ions and must be a PICVolDistrib
- inPop2VolInteract are the neutrals and can only be generated Advanced yes

from an artificial surface source defined by a
LocalMaxwellSurfDistrib

volInteractType2 String CEXInteractor None
Type of 2nd volume interaction, UI-buildable class name derived from
VolInteract Advanced yes

Example of cross section definition file:

E (eV) cross section (m2)
 0.0 2.0e-18
 100.0 1.2e-18
 300.0 1.0e-18
1000.0 .9e-18

The syntax is:
- first line = header (unread)
- next lines: energy in eV and cross section in square meters (separator = space)

Remark: it is still possible to use the single volume interaction version by setting the parameters volInteract to parameter4VolInteract (without numbering
as in volInteract1). In that case, it is not possible to define multiple volume reactions. It may be the case when using projects built with a version older
than SPIS4.3.

Back to top.

Outputs

These parameters mostly the periodicity for storing data for postprocessing (these data are then returned to UI and can be plotted).
Other parameters tune the detail level for screen printing (or verbosity level).

Name Type
Default
Value Unit Description

Expertise
Level In use

cumulateBetweenSteps int 1 None
cumulate currents and densities between monitoring steps for improved statistics
(0=no, 1=yes(improved only), 2=both)? Advanced yes

currentLogPlotCutoff double 1E-12 [A/m2] cutoff for current log plots Advanced yes
currentLogPlotFlag int 2 None plot log10 of currents? 0=no, 1=yes(log only), 2=both Advanced yes
currentMapMonitorStep double -10 [s] time step for current density vectors monitoring (0 => none, -n => n times) Low yes
densitiesMapsMonitorStep double -10 [s] time step for densities monitoring (0 => none, -n => n times) Low yes
densityChargeState int 4 None control of output density type, either amu/m3 or #/m3, 1=amu, 2=#, 4=automatic Advanced yes

(from known particle type)
densityLogPlotCutoff double 0.001 [ecu/m3] cutoff for density log plots Advanced yes
densityLogPlotFlag int 2 None plot log10 of densities? 0=no, 1=yes(log only), 2=both Advanced yes
energyMapMonitorStep double -10 [s] time step for kinetic energy monitoring (0 => none, -n => n times) Low yes
exportAllDataFields String None None Select the export mode for all data fields (None=no export, ASCII=ASCII multi-files) Advanced yes

exportDensity String None None
Select the export mode for density data fields (None=no export, ASCII=ASCII multi-
files) Advanced yes

exportPotential String None None
Select the export mode for potential data fields (None=no export, ASCII=ASCII
multi-files) Advanced yes

finalCumulation int 2 None cumulate currents and densities at the end of simulation ? 0=no, 1or2=yes Low yes

finalCumulationStartTime double 0.8 [s] or [-]
if finalCumulation=1 starting time for final dens-current cumulation, if
finalCumulation=2 fraction of the simulation at which cumulation starts Low yes

fluxChargeState int 4 None
control of output collected fluxes type, either C/m2/s = A/m2 (i.e. a current) or #/m2/s
(i.e. a flux), 1=currents, 2=fluxes, 4=automatic (from known particle type) Advanced yes

materialPropertyPlots int 1 None flag for plotting material properties: 0=no, 1=yes Low yes

numericsMapsMonitorStep double -10 [s]
time step for numerical behaviour monitoring through 3D maps of superparticle
numbers, one in #/element and one in #/node (0.0 => none, -n => n times) Low yes

numericsMonitorStep double -100 [s] time step for numerical behaviour monitoring (0.0 => none, -n => n times) Low yes
particleTrajectoriesNb int 0 None number of particle trajectories per PIC population Advanced yes
particleTrajectoriesPeriod int 1000 None Probability to folLow a particle trajectory = one over particleTrajectoriesPeriod Advanced yes
plasmaElecFieldMapMonitorStep double -10 [s] time step for plasma electric field monitoring (0 => none, -n => n times) Low yes
plasmaPotMapMonitorStep double -10 [s] time step for plasma potential monitoring (0 => none, -n => n times) Low yes
poissonVerbose int 3 None Same as verbose, but specific to Poisson solver Advanced yes
scCurrentMapMonitorStep double -10 [s] time step for spacecraft local currents monitoring (0 => none, -n => n times) Low yes
scElecFieldMapMonitorStep double -10 [s] time step for spacecraft electric field monitoring (0 => none, -n => n times) Low yes
scPotMapMonitorStep double -10 [s] time step for spacecraft local potential monitoring (0 => none, -n => n times) Low yes
scPotMonitorStep double -100 [s] time step for spacecraft ground potential monitoring (0 => none, -n => n times) Low yes

taskDurationVerbose int 3 None Same as verbose, but specific to CPU monitoring Advanced
since

SPIS5

verbose int 3 None

Verbosity level (level of screen messages about code execution):
0 = no print at all
1 = prints errors and warnings only
2 = 1 + minimal information
3 = 1 + more information (remains yet readable)
4 = even more information
… (next levels for debugging) Advanced yes

Back to top.

Scenario

The default Scenario is Scenario, which is transparent (no real scenario, everything in and out is simply transferred from/to the top level Scenario
to/from the regular Simulation).

Generic "plug-in" scenarios can be implemented and easily integrated. The general rules for the scenario parameter, which defines the Scenario type
(class), are:
- this class must derive from the class Scenario
- have a specific constructor including the UI-defined parameters as described in "Writing UI-supported classes" page and in Scenario

In practice as of today the only non trivial scenario implemented is PotentialSweep. It consists in chaining successive simulations for different surface
potentials. Results are extracted in the form of current-voltage (IV) characteristics for the populations, nodes, types of current selected.
When PotentialSweep is in use, the scenario parameters are understood the following way:

Name Type
Default
Value Unit Description

Expertise
Level In use

scenarioParameter1 int 0 [-] If PotentialSweep: Number of steps of the potential sweep Advanced yes
scenarioParameter10 int 0 [-] If PotentialSweep: Maximal Id node number Advanced yes
scenarioParameter11 int 0 [-] If PotentialSweep: Flag for type of current monitored (0=all, 1=collected, 2=emitted) Advanced yes

scenarioParameter12 int 0 [-]
If PotentialSweep: Number of nodes whose potential changes. For each node, the potential sweep is linear
between the initial and final voltages. Advanced yes

scenarioParameter13 int 0 [-] If PotentialSweep: Id of 1st node with pot change Advanced yes
scenarioParameter14 double 0 [V] If PotentialSweep: Initial potential of 1st node Advanced yes
scenarioParameter15 double 1 [V] If PotentialSweep: Final potential of 1st node Advanced yes
scenarioParameter16 int 0 [-] If PotentialSweep: Id of 2nd node with pot change Advanced yes
scenarioParameter17 double 0 [V] If PotentialSweep: Initial potential of 2nd node Advanced yes
scenarioParameter18 double 1 [V] If PotentialSweep: Final potential of 2nd node Advanced yes
scenarioParameter19 int 0 [-] If PotentialSweep: Id of 3rd node with pot change Advanced yes

scenarioParameter2 double 0 [V]

Initial voltage (only used for monitoring)
NB: this voltage and the Final voltage of scenarioParameter3 define the table of potentials used in the
results files (and not the potential of each node) Advanced yes

scenarioParameter20 double 0 [V] If PotentialSweep: Initial potential of 3rd node Advanced yes

scenarioParameter21 double 1 [V] If PotentialSweep: Final potential of 3rd node Advanced yes
scenarioParameter22 int 0 [-] If PotentialSweep: Id of 4th node with pot change Advanced yes
scenarioParameter23 double 0 [V] If PotentialSweep: Initial potential of 4th node Advanced yes
scenarioParameter24 double 1 [V] If PotentialSweep: Final potential of 4th node Advanced yes
scenarioParameter25 int 0 [-] If PotentialSweep: Id of 5th node with pot change Advanced yes
scenarioParameter26 double 0 [V] If PotentialSweep: Initial potential of 5th node Advanced yes
scenarioParameter27 double 1 [V] If PotentialSweep: Final potential of 5th node Advanced yes
scenarioParameter28 int 0 [-] If PotentialSweep: Id of 6th node with pot change Advanced yes
scenarioParameter29 double 0 [V] If PotentialSweep: Initial potential of 6th node Advanced yes
scenarioParameter3 double 1 [V] If PotentialSweep: Final voltage (used for monitoring, not to define node potentials) Advanced yes
scenarioParameter30 double 1 [V] If PotentialSweep: Final potential of 6th node Advanced yes

scenarioParameter4 double 2E-06 [s]
Duration of first I-V step
NB: if PotentialSweep is in use, the parameter duration is used for monitoring concerns only. Advanced yes

scenarioParameter5 double 1E-06 [s] If PotentialSweep: Duration of other steps Advanced yes
scenarioParameter6 double 0.5 [-] If PotentialSweep: Fraction of step duration used for IV sweeps results Advanced yes

scenarioParameter7 int -1 [-]

Flag for populations monitored. Populations taken into account for I-V sweeps: bits for populations to be
taken into account.
9 bits are used for successive:
- all populations
- elec1
- elec2
- ions1
- ions2
- source1
- source2
- source3
- source4
ex: binary 000100011 = decimal 35 enables I- V sweep for all populations, elec1 and source1.
ex: decimal -1 makes IV sweeps for each population Advanced yes

scenarioParameter8 int -1 [-]
If PotentialSweep: Flag for nodes monitored (-1: all nodes; else: minimum and maximum nodes Id to be
defined) Advanced yes

scenarioParameter9 int 0 [-] If PotentialSweep: Minimal Id node number Advanced yes

Back to top.

Transitions

The Scenario class was made somewhat obsolete by SPIS 5. We recommend to use Transitions instead defined because they are more flexible and
defined by much less parameters and by ASCII tables, see SPIS 5 User Manual annex on “Advanced uses for scientific applications”.

Name Type Default Value Unit Description
Expertise

Level In use
transitionNb int 0 None number of transitions Medium yes

transitionFlag1 double 0 None
flag for activating transition 1 (sun flux change) on the simulation configuration: 0 => none,
1.0 => yes Low yes

transitionFlag2 double 0 None
flag for activating transition 2 (conductivity change) on the simulation configuration: 0 =>
none, 1.0 => yes Low yes

transitionType1 String BasicEclipseExit None Name of the Transition class to be used for transition 1 on the simulation Advanced yes
transitionType2 String ConductivityEvolution None Name of the Transition class to be used for transition 2 on the simulation Advanced yes
transitionDt1 double 0.01 [s] maximal time step when the transition 1 evolves Medium yes
transitionDt2 double 0.01 [s] maximal time step when the transition 2 evolves Medium yes

Local parameters

These local parameters are scalar fields living either in the volume or on a surface (spacecraft or external boundary). Not all of them are used in the
present version of the code. Some come in addition to global parameters that they override when some flag declares that a property is to be considered
as local (e.g. turning on an interaction only locally).

They can be defined through the group editor. It allows to define them group by group (a uniform value on each group).
See the SPIS5 User Manual for practical usage of the group editor.

The local fields are described now. They are grouped somewhat arbitrarily as:

o Electrical node model
o External Boundary Electric field Boundary Condition
o External Boundary Plasma population Boundary Condition
o Spacecraft Conductivity model
o Spacecraft electric field Boundary Condition
o Spacecraft Macroscopic characteristics
o Spacecraft Material model
o Spacecraft Plasma Population Boundary Condition
o Spacecraft sources and interactors

o Spacecraft thin elements
o Volume plasma model

NB: Only the properties that may be modified by the users are in bold here. You will find a few others which should not be modified indeed.

Name Description Live on
(spacecraft,

external
boundary

or volume)

Sub-group of
properties

Centring, or
localisation

(0=node,
1=edge,

2=surface,
3=volume)

Unit Default
value

Comment (in use
or not)

ElecNodeId The electric (super) node this element is related to
(SC ground, array ground…)

SC Electrical node
model

2 [-] 0 Yes

EdgeElecNodeId The (macro) electric node edges are related to
(SC ground, array ground...)

SC Electrical node
model

1 [-] 0 Yes

BdDiriFlag If 1, Dirichlet condition for Poisson equation on
external boundary (fixed potential)

Boundary Ext. Bound.
Electric field BC

0 [-] 0 Yes,Since SPIS
V4.0 (used to be
Fourier only)

BdDiriPot The potential to be used for Dirichlet condition Boundary Ext. Bound.
Electric field BC

0 [V] 0 Yes,Since SPIS
V4.0

BdFourFlag If 1, Fourier condition for Poisson equation on
external boundary

Boundary Ext. Bound.
Electric field BC

2 [-] 1 Yes,Since SPIS
V4.0

BdFourAlpha Alpha parameter in Fourier condition: alpha pot +
d(pot)/dn = value (used if poissonBCType = 0)

Boundary Ext. Bound.
Electric field BC

2 [m-1] 0 Yes

BdFourValue Right hand side parameter in Fourier condition:
alpha pot + d(pot)/dn = value (used if
poissonBCType = 0)

Boundary Ext. Bound.
Electric field BC

0 [V/m] 0 Yes

IncomPart If 0, no particle are injected.
If 1, particles are injected (following the defined
environment)

Boundary Ext. Bound.
Plasma population
BC

2 [-] 1 Yes (since SPIS
V4.2)

OutgoPart If 0, outgoing particles are lost (sink)
If 1, they bounce specularly
(extra options possible)

Boundary Ext. Bound.
Plasma population
BC

2 [-] 0 Yes (since SPIS
V4.2)

VolConduct If 1, volume conductivity through the bulk material
is turned on locally

SC S/C Conductivity
model

2 [-] 0 No (global flag only
is under use)

IndConduct If 1, induced volume conductivity is turned on
locally and simulated (if 0, the raw volume
conductivity above is used)

SC S/C Conductivity
model

2 [-] 0 No (global flag only
is under use)

SurfConduct If 1, surface conductivity is turned on locally and
simulated (from the top of a cell to the next ones)

SC S/C Conductivity
model

2 [-] 0 No (global flag only
is under use)

SCDiriFlag If 1, Dirichlet condition for Poisson equation on
SC (fixed potential)

SC S/C electric field
BC

0 [-] 1 No: set to 1,
always Dirichlet on
SC

SCDiriPot The potential to be used for Dirichlet condition SC S/C electric field
BC

0 [V] 0 Yes

SCDiriPotSurf The potential to be used for Dirichlet condition,
the one used for physical SC surfaces

SC S/C electric field
BC

2 [V] 0 Yes

SCDiriPotEdge The potential to be used for Dirichlet condition,
the one used for physical thin wires

SC S/C electric field
BC

1 [V] 0 Yes

SCFourFlag If 1, Fourier condition for Poisson equation on SC:
alpha pot + d(pot)/dn = value

SC S/C electric field
BC

2 [-] 0 No: set to 0,
always Dirichlet on
SC

SCFourApha Alpha parameter in Fourier condition: alpha pot +
d(pot)/dn = value

SC S/C electric field
BC

2 [m-1] 0 No: always
Dirichlet on SC

SCFourValue Right hand side parameter in Fourier condition :
alpha pot + d(pot)/dn = value
NB: note the centring different from other Fourier
parameters

SC S/C electric field
BC

0 [V/m] 0 No: always
Dirichlet on SC

MatThickness Material thickness (overrided by the material
thickness defined in the generic material property
set, if negative)

SC S/C Macroscopic
characteristics

2 [m] -1 Yes
Warning : risk of
confusion with
DTM material
property (not
used)

Temperature Surface temperature SC S/C Macroscopic
characteristics

2 [K] 300 No (needed by no
interaction for now)

MatModelId Id of the material model used for this material SC S/C Material model 2 [-] 0 Yes

MatTypeId Id of this material in its material model SC S/C Material model 2 [-] 0 Yes

PhotoEmis If 1, photo emission is turned on locally and
simulated

SC S/C Plasma
Population BC

2 [-] 0 No (global flag only
is under use)

ElecSecEmis If 1, secondary electron emission under electron
impact is turned on locally and simulated

SC S/C Plasma
Population BC

2 [-] 0 No (global flag only
is under use)

ProtSecEmis If 1, secondary electron emission under proton
impact is turned on locally and simulated

SC S/C Plasma
Population BC

2 [-] 0 No (global flag only
is under use)

SunFlux Sun flux on spacecraft, normalised to sun flux at 1
AU (only used when global parameter
photoEmission = 5 or 7)

SC S/C Plasma
Population BC

2 [-] 0 Yes

SourceId Id of the local artificial plasma source defined on
the spacecraft: between 1 and sourceNb (=4) to
have source 1 to 4 emitting at this place.
Value 0 or negative => no source.
NB: Possible to have multiple sources at single
place, using this id as the mother source id.

SC S/C sources and
interactors

2 [-] 0 Yes

SourceCurrent Emitted current, or flux, of an artificial source
defined on the spacecraft.
NB: As each local parameter, SourceCurrent has
only one unit during a single simulation. The first
defined spacecraft source imposes the unit of
currents to other ones. It is preferable to set the
same units for all sources.

SC S/C sources and
interactors

2 [depends] 0 Yes
(flux units, [#/m2/s],
or[kg/m2/s], only
since SPIS V4.3)

SourceTemp Temperature of the emitted Maxwellian
distribution, if sourceType of the corresponding
sourceId (hence sourceType1 where sourceId =
1, or sourceType2 where sourceId = 2, etc.) is a
LocalMaxwellSurfDistrib (if not, the interpretation
of this value can be different, see each class
description)

SC S/C sources and
interactors

2 [eV] 0 Yes

SourceMach Source Mach number (0 => Lambertian).
The exact definition of this parameter can be
different depending on the surface distribution
using it (see e.g. MaxwellianThruster, while
LocalMaxwellSurfDistrib does not use it and only
generates local Lambertian distributions)

SC S/C sources and
interactors

2 [-] 0 Yes

SurfThicknessS Thickness of 2D surfaces (used when surfaces
are tagged as thin, their thickness not meshed)

SC S/C thin elements 2 [m] 0 Yes

EdgeRadiusS Radius of 1D elements (used when edges are
tagged as physical thin wires, their thickness not
meshed)

SC S/C thin elements 1 [m] 0 Yes

MatModelIdOnWire Id of the material model used for this material on a
wire element (0: default model = NASCAP-
properties-based)

SC S/C thin elements 1 [-] 0 Yes (since SPIS 5)

MatTypeIdOnWire Id of this material in its material model on a wire
element (-1 : no coating: bare metal, no
interaction (except collection))

SC S/C thin elements 1 [-] -1 Yes (since SPIS 5)

PhotoEmisOnWire If 1, photo emission is turned on and simulated on
a wire element

SC S/C thin elements 1 [-] 0 No (global flag only
is under use)

ElecSecEmisOnWire If 1, secondary electron emission under electron
impact is turned on and simulated on a wire
element

SC S/C thin elements 1 [-] 0 No (global flag only
is under use)

ProtSecEmisOnWire If 1, secondary electron emission under proton
impact is turned on and simulated on a wire
element

SC S/C thin elements 1 [-] 0 No (global flag only
is under use)

SunFluxOnWire Sun flux on spacecraft on a wire element [sun at 1
AU] (compute it from sun direction, possibly
including shades)

SC S/C thin elements [-] -1 Yes (since SPIS 5)

SourceIdOnWire Id/type of an artificial plasma source defined on
the spacecraft on a wire element (e.g. thruster or
ion gun) (-1 : no source)

SC S/C thin elements 1 [-] -1 Yes (since SPIS 5)

SourceCurrentOnWire Current of an artificial source defined on the
spacecraft on a wire element (NB: for some
sources the unit can be different, e.g. the particle
number, or the total current)

SC S/C thin elements 1 [A/m2] 0 Yes (since SPIS 5)

SourceTempOnWire Temperature of the emitted Maxwellian
distribution on a wire element

SC S/C thin elements 1 [eV] 1 Yes (since SPIS 5)

SourceMachOnWire Source Mach number on a wire element (0 =>
Lambertian) [-]

SC S/C thin elements 1 [-] 0 Yes (since SPIS 5)

InstrumentSupport Localization index for instruments localized on the
spacecraft

SC SC Instruments 2 [-] 0 Yes

VolInteracFlag If 1, volume interaction is computed locally in that
region (typically charge exchange)

Volume Volume plasma
model

3 [-] 0 No (global flag only
is under use)

BackgroundDens Fixed background density used to compute
volume interaction (typically: neutral density)

Volume Volume plasma
model

3 [m-3] No

Back to top.

