
Particle-In-Cell Model 
 
This document describes the model for Monte Carlo simulation of charged particles as 
implemented in PICVolDistrib class. It both includes the charge deposit and particle 
trajectories integration. 
 
 
Charge deposit 
 
Charge density is computed form the sampled particle distribution (Monte Carlo) following 
Particle-In-Cell scheme (PIC). When density is requested by the code, each particle deposits 
its density on the neighbouring nodes, with a linear weighing. For the current 3D unstructured 
volume mesh, it amounts to depositing charge on the four nodes of the tetrahedron containing 
the particle proportionally to its barycentric coordinates. 
 
Trajectory integration 
 
Basic model 
 
The basic model for particle trajectory integration is a leapfrog scheme. Particle position and 
acceleration are computed at time t(n) with spacing dt, while velocities are computed at 
intermediate times t(n+1/2) = t(n) + dt/2. Although this scheme is coded as first order (v -> v + 
a.dt, x -> x + v.dt) the shifting of velocity to t(n+1/2) makes it accurate to second order in dt 
(error in O(dt3)). This however constraints dt to be constant for a particle, hence for all 
particles of a population in practice. This is why user control for population time step is very 
important (or at least in some situations, see next paragraph). The user must check manually 
that the time step the code determines from user inputs (see Controlling Num from UI) is 
correct to ensure particle steps significantly smaller than cell size (time steps dt for each 
populations are displayed on screen during execution). 
 
Improvement in 2005 
 
A significant improvement with respect to this basic model was implemented in 2005. In this 
advanced model, it is taken advantage of the specificities of current SPIS electric field model 
to perform an exact integration of particle trajectories. Since the potential is currently 
considered as step-wise linear (in each tetrahedron), the electric field is constant in each cell, 
which yields a parabolic trajectory in each cell. When possible the particle trajectories are 
thus integrated exactly, following a new parabolic arc in each tetrahedron. The limitations to 
this possibility are the following: 

- presence of a magnetic field 
- special shape of potential (non linear) in the vicinity of thin wires (1D) or thin plates 

(2D) 
in which case the code automatically switches back to the basic leapfrog model (for the whole 
domain, not simply the local tetrahedra around wires and plates which do not have linear 
potential). 
 
NB1: in presence of a magnetic field, the trajectories are still analytical (accelerated screw) 
only the intersections with the tetrahedra planes are not. It could thus be possible to also 
perform an analytical integration provided some typically dichotomy-like method is 
implemented for intersections. So, in future this solver could be improved with analytical 



integration all over the mesh even in presence of B field, with another method in the specific 
tatrahedra close to wires and plates (leapfrog or better). 
 
NB2: Of course, using the specificities of the field model makes the code less modular. The 
basic leapfrog model can work with whatever field model, provided it can supply electric field 
at particle positions, for example an analytical E field, or even an E field computed an a 
different mesh, etc.  
 
Improvements in SPIS v4 
 
Major improvements were brought to particle integration in SPIS v4 (2007-09). 
 
First the switch between the exact integration method and the iterative method was made 
local. When crossing tetrahedra with a constant electric field and no B field, the exact 
integration method is used. In tetrehedra with non uniform forces (either a non uniform 
electric field or a B field) the integration is performed through an iterative method. 
 
Second, the iterative method was improved from leapfrog (2nd order method) into a Runge-
Kutta Cash-Karp method, which is 4th order exact with a control of the accuracy. This allowed 
implementing a local subcycling to control the accuracy for each particle. 
 
Finally, on the software point of view, the particle pusher that implements these algorithms 
(the solver of particle movement equations) was separated from the PIV volume distribution. 
As a consequence a single PICVolDistrib class can incorporate variable pushers. As of SPIS 
v4.0 two pushers exist (implement the interface ): 

- the BasicPusher implements the old method (global switch between exact and 
leapfrog) 

- while the ComplexPusher implements the new one (local switch between exact and 
RKCK) 

 


