

SPIS-GEO

Architecture Design Document PAGE
1/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

Deliverable #4

Architecture Design Document

 Name Date

Prepared by Benoît Thiébault, Project Manager 04/11/2010

Checked by Jérémie Turbet, Software developer 08/11/2010

Approved by Julien Forest, Expert Consultant 09/11/2010

SPIS-GEO

Architecture Design Document PAGE
2/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

Table of contents

1.	 INTRODUCTION 5	
1.1.	 Scope of the document 5	
1.2.	 Reference and applicable documents 5	

1.2.1.	 Applicable documents 5	
1.2.2.	 Reference documents 5	

1.3.	 Acronyms and abbreviations 5	

2.	 SYSTEM OVERVIEW 6	
2.1.	 Background and context 6	
2.2.	 System workflow: the modelling chain 6	
2.3.	 System data flow 7	

3.	 SYSTEM DESIGN 10	
3.1.	 Modular architecture 10	
3.2.	 Keridwen 2.0 12	

4.	 SOFTWARE COMPONENTS DESCRIPTION 13	
4.1.	 Geometry module 13	
4.2.	 Mesh generation module 13	
4.3.	 Mesh inspection module 13	
4.4.	 Local properties module 14	
4.5.	 Environment and numerical parameters module 14	
4.6.	 Numerical kernel module (SPIS-NUM) 14	
4.7.	 Monitoring module 14	
4.8.	 Post-processing module 15	

5.	 THIRD-PARTY COMPONENTS 16	
5.1.	 GMSH 16	
5.2.	 VTK 16	
5.3.	 JFreeChart 16	
5.4.	 Keridwen data manager 16	
5.5.	 Keridwen command line 16	

SPIS-GEO

Architecture Design Document PAGE
3/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

5.6.	 Keridwen reporting 16	
5.7.	 Keridwen wizards 16	
5.8.	 JFreeMesh 16	

6.	 SOFTWARE REQUIREMENTS VERSUS COMPONENTS
COMPLIANCE MATRIX 17	

7.	 CONCLUSION 18	

SPIS-GEO

Architecture Design Document PAGE
4/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

Summary
Objectives
The purpose of this document is to define a collection of software components and their interfaces to
establish a framework for developing the software.

Technical overview
SPIS-GEO application is proposed to be built on top of Keridwen 2.0, an OSGi-based Integrated
Modelling Environment to achieve a modular application, easier to maintain and to integrate with other
tools.

A description of the components of this modular application is given as well as the compliance matrix
with the software requirements.

Diffusion
Nom Organisation

David Rodgers
Alain Hilgers
Fabrice Cipriani

ESA

Julien Forest
Benoît Thiébault
Jérémie Turbet

Artenum

Jean-Charles Matéo Vélez
Jean-François Roussel
Pierre Sarrailh

ONERA

Bjarne Andersson
Alain Demairé

SSC

Patrice Pelissou
Marc Sevoz

EADS-Astrium

Changes record
Version Revision Date Author / Modification

1 0 04/11/2010 Benoît Thiébault / Document creation

SPIS-GEO

Architecture Design Document PAGE
5/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

1. Introduction
1.1. Scope of the document

The purpose of this document is to define a collection of software components and their interfaces to
establish a framework for developing SPIS-GEO.

1.2. Reference and applicable documents
1.2.1. Applicable documents

[AD1] Statement Of Work “Simplified MEO/GEO Tools for Spacecraft Charging”, TEC-
EES/2008.348/DR, issue 1.0, 30/09/2009.

[AD2] Technical and Administrative Proposal, ESA-SPISGEO-PTC-2009-12-001, 20/11/2009

[AD3] Software Requirements Document, ESA-SPISGEO-D3-SRD-2010-11-001.

[AD4] Guide to applying the ESA software engineering standards to small software projects,
BSSC(96)2 Issue 1, 1996.

[AD5] Guide to the software architectural design phase, ESA PSS-05-04 Issue 1 Revision 1, March
1995

1.2.2. Reference documents
N/A

1.3. Acronyms and abbreviations
• GUI: Graphical User Interface

• S/C: Spacecraft

• SPIS-CORE: Current Spacecraft Plasma Interactions Software main development branch that
is available on spis.org website (version 4.2).

• SPIS-GEO: Simplified Standard MEO/GEO Tools for Spacecraft Charging

• TBD: To Be Determined

• UR: User Requirement

• WC: Worst Case

• W.R.T.: with respect to

SPIS-GEO

Architecture Design Document PAGE
6/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

2. System overview
2.1. Background and context

Initially released in March 2004, the SPIS software has become today the European standard for the
modelling and the simulation of the spacecraft plasma interactions. Initially funded on an ESA effort
and following an open-source approach in the frame of the SPINE community, SPIS knows today a
real and dynamic community life. SPINE counts more than 250 registered members today, inside and
outside EU. The average number of posts on the forums overtakes 70 messages per month.

Originally designed to focus on scientific applications, the application scope of SPIS is largely wider
now and is regularly extended to new engineering applications or domains of physics. This includes,
for instance, the modelling of electrical propulsion systems, ESD prediction on solar arrays or link with
radiation models through deep charging phenomena.

The prediction of the electrostatic charge (absolute and relative) of spacecraft for engineering
purposes is also a key issue with modern platforms that are more and more complex, operating high-
power and sensitive electronic devices or using modern materials. Differential charging can lead to
arcing, dangerous for the electronic payload. Absolute charging can induce disturbances on the radio
transmission and/or the positioning systems using electric propulsion. This need is especially critical
for GEO and MEO missions, where are located most of the commercial platforms. Moreover, the
progressive generalisation of electrical propulsion systems on commercial platforms pushes
integrators to perform much more detailed electrostatic analysis before the flight.

Legacy tools currently used in the industry, like NASCAP, cannot address these modern constraints.
Thanks to its modularity and the implemented models representing the present state-of-the-art in
plasma-surface interactions, SPIS is currently probably the best basis to address these issues in a
self-consistent manner. There is a real need of a specific version of SPIS, called SPIS-GEO, to model
MEO and GEO missions that would simplify its usage in an engineering context.

2.2. System workflow: the modelling chain
In order to perform a simulation with SPIS, the user has to follow a given number of pre- and post-
processing steps in the correct order. In SPIS-CORE, the number of the steps to perform the
simulation is high but provides the possibility to configure the simulation with the maximum of details,
which is the objective of a simulation software targeted to scientists.

In SPIS-GEO, this modelling chain has to be simplified so that engineers can perform the simulation
without requiring advanced knowledge in plasma physics or the numerical models. The following steps
(illustrated in Figure 1) are proposed to define the simplified modelling chain of SPIS-GEO:

• Geometry edition/creation: during this step, the user either provides an existing CAD file or
creates a new one from the definition of the satellite geometry

• Mesh generation: the user specifies the global refining factor to be applied to the meshing
and if he/she wants the generated mesh to be analysed. Then he/she executes the mesh
generation.

• Mesh inspection: the quality of the previously generated mesh is analysed if required. If the
mesh quality is not satisfactory, the user can either modify the global refining factor or the
spacecraft geometry definition.

• Local properties and electrical circuit settings: the user sets the local properties to be
applied (material properties, boundary conditions, electrical nodes, electric propulsion, etc.)
and defines the relationship between the different electrical nodes.

SPIS-GEO

Architecture Design Document PAGE
7/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

• Environment and numerical settings: the user has to provide the environment conditions in
which he/she wants to model the satellite/plasma interaction as well as numerical settings
(such as simulation duration).

• Simulation loop: the simulation loop is the phase during which the numerical core of SPIS-
GEO is executed to compute the spacecraft/plasma interactions

• Monitoring: during the simulation loop, the user can visualize the progress of the computation
as well as some key results (such as spacecraft potential as a function of time, collected
currents as a function of time, etc.)

• Post-processing: once the simulation has complete, the user can visualize the results and
export them in various formats.

Figure 1: SPIS-GEO modelling chain

2.3. System data flow
This modelling chain can be described in more details by providing the flow of data between the
different steps of the workflow, as illustrated in Figure 2. The different data that SPIS-GEO deals with
are:

• External input data:

o Spacecraft geometry description and/or an existing CAD file: to start a simulation in
SPIS, one needs to model the spacecraft geometry, which should either be created
from spacecraft geometry specification or from an existing CAD file.

SPIS-GEO

Architecture Design Document PAGE
8/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

o Spacecraft environment: the definition of the spacecraft environment that can be
deduce from its orbit.

o Spacecraft properties: the material properties of the external spacecraft surfaces and
the electric propulsion characteristics, if any.

• Internal data:

o Geometry description: the geometry description of the spacecraft converted in GMSH-
compatible format.

o Unstructured 3D mesh: the 3D tetrahedral mesh generated by GMSH mesher, with the
CAD groups information.

o Mesh inspection results: the quality analysis results performed on the mesh.

o Mesh with local properties applied: the 3D mesh and the various local properties
(material properties, boundary conditions, etc.) defined by the user.

o Environment and numerical parameters: the environment characteristics and the
simulation parameters (e.g.: simulation duration)

o Monitoring data: the relevant data to monitor the simulation and diagnose the
convergence of the algorithms.

o Simulation results: the physical results of the simulation, including potential in volume
and on surface elements, the collected currents, the various particle population
densities, etc.

• External output:

o Exported simulation data: the simulation results exported in files for post-processing
with external tools (e.g. VTK or ASCII files)

SPIS-GEO

Architecture Design Document PAGE
9/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

Figure 2: SPIS-GEO data flow

SPIS-GEO

Architecture Design Document PAGE
10/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

3. System design
3.1. Modular architecture

Modular programming is a software design technique that increases the extent to which software is
composed of separate, interchangeable components, also called modules. Conceptually, modules
represent a separation of concerns, and improve maintainability by enforcing logical boundaries
between components. Modules are typically incorporated into the program through interfaces. A
module interface expresses the elements that are provided and required by the module. The elements
defined in the interface are detectable by other modules. The implementation contains the working
code that corresponds to the elements declared in the interface.

The OSGi framework [http://www.osgi.org] is a module system and service platform for the Java
programming language that implements a complete and dynamic component model. Its first
specification was released in 2000. In 2003 Eclipse [http://www.eclipse.org] selected OSGi as the
underlying runtime for their plug-in architecture. A very dynamic open-source community and years of
experience in multiple enterprise applications (e.g. Glassfish [https://glassfish.dev.java.net/]) make the
framework now mature.

Figure 3: OSGi Services Platform architecture

The OSGi Platform can be divided in two main elements:

• A services platform

• A deployment infrastructure

A services platform is defined as a software platform that supports the service orientation interaction
depicted in Figure 4. This interaction involves three main actors: service providers, service requesters
and a service registry, although only the service registry belongs to the services platform. In the
service orientation interaction, service providers publish service descriptions, and service requesters
discover services and bind to the service providers. Publication and discovery are based on a service
description. In OSGi, service providers and requesters are part of the bundle that is both a logical as
well as physical entity.

SPIS-GEO

Architecture Design Document PAGE
11/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

Figure 4: Services oriented interactions

Physically, a bundle corresponds to a delivery and deployment unit that is materialized by a JAR file
that contains code and resources (i.e., images, libraries, etc.) along with a file that contains information
about the bundle, the manifest file. The OSGi framework provides mechanisms to support continuous
deployment activities. These deployment activities include installation, removal, update, starting
(activation) and stopping (de-activation) of a physical bundle. Once a bundle is installed in the
platform, it can be activated if deployment dependencies that are associated to the bundle are fulfilled.
The lifecycle of a bundle is described in Figure 5.

Figure 5: OSGi bundle lifecycle

There are numerous advantages of using modular programming:

• Higher granularity encapsulation: the modules add a layer of abstraction that makes it easier
to substitute components and enables a better reuse and sharing of code. As the “contract” of
a module (what it provides and what it requires) is clearly defined, they are easier to integrate
in other contexts.

• Simplified distributed team development: the bundle isolation makes it much easier for their
development by different teams. The huge number of the Eclipse plug-ins, developed by
numerous companies illustrates the extent of the distributed development possibilities.

• Lower maintenance cost: bundles can be updated individually and as their boundaries are
clearly expressed and enforced by the OSGi framework, updating one component has limited
impact on others.

Other advantages provided by OSGi are:

SPIS-GEO

Architecture Design Document PAGE
12/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

• The possibility, in future versions of SPIS, to deploy the bundles in distributed environments

• The easier integration with existing tools in TEC-EES section (ESABase 2)

3.2. Keridwen 2.0
Keridwen 2.0 [http://www.keridwen.org] is the new generation of open-source Integrated Modelling
Environment (IME). Based on OSGi, it implements core functionalities for scientific applications like
SPIS-GEO. As illustrated on Figure 6, an application based on Keridwen is formed of OSGi
components with a dedicated user interface and controller. They are plugged dynamically to Keridwen
central controller and graphical user interface and can rely on Keridwen common services and data
manager to execute non tailored activities, favouring reuse and validation of core components.

Figure 6: Keridwen-based architecture

It is proposed to base the architecture of SPIS-GEO on this new version of Keridwen. The objective is
to benefit from this component-based and service-oriented architecture to facilitate SPIS future
development and interactions with other tools.

In order to design the architecture of SPIS-GEO, the software has to be decomposed in components,
which is the subject of the next section. The components identified are very close to existing SPIS
Tasks. This will allow reusing most of the existing and validated code in SPIS-GEO, only changing the
packaging of the modules from the Tasks formalism to the OSGi bundle standard.

SPIS-GEO

Architecture Design Document PAGE
13/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

4. Software components description
As described in Figure 1 and Figure 2, SPIS-GEO workflow is composed of unitary steps that depend
on each other according to a modelling chain. It is thus very natural, as a first step, to map SPIS-GEO
components to these steps. In the future, components could be split further if required.

Here is a description of each of the software components.

4.1. Geometry module
Name Geometry module

Input
• Spacecraft geometry definition
• And/or an existing CAD file

Functions

• Import the existing CAD file and convert it into GMSH-compatible geometry
• Provide user assistance to create and modify GMSH geometries (simple sphere,

cube, cylinder, thin panels and booms, etc.)
• Preview the geometry and its groups

Dependencies
• GMSH for geometry design
• VTK for group visualization

Output • GMSH-compatible geometry description

4.2. Mesh generation module
Name Mesh generation module

Input • GMSH-compatible geometry description

Functions
• Setup of the global refining factor
• Mesh generation

Dependencies
• GMSH for the meshing
• JFreeMesh for the mesh conversion

Output • Unstructured 3D mesh

4.3. Mesh inspection module
Name Mesh inspection module

Input • Unstructured 3D mesh

Functions
• Analyse mesh quality
• Provides graphical illustration of quality criteria

Dependencies
• JFreeMesh for the mesh analysis
• VTK for the mesh visualization

Output • Unstructured 3D mesh

SPIS-GEO

Architecture Design Document PAGE
14/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

4.4. Local properties module
Name Local properties module

Input • Unstructured 3D mesh

Functions

• Local properties database management (creating, editing and deleting material
properties)

• Local properties allocation to spacecraft groups
• Groups visualization
• Electric propulsion settings
• Spacecraft circuit definition

Dependencies
• VTK for group visualization
• JFreeMesh for local properties allocation on mesh elements

Output • Unstructured 3D mesh with local properties applied

4.5. Environment and numerical parameters module
Name Environment and numerical parameters module

Input • Spacecraft environment

Functions

• Definition of the plasma environment
• Selection of worst-case or typical MEO/GEO environments
• Solver models and numerical parameters definition
• Spacecraft illumination
• Activation of transition scenarios

Dependencies N/A

Output • Global environment and numerical parameters

4.6. Numerical kernel module (SPIS-NUM)
Name Numerical kernel module (SPIS-NUM)

Input
• Unstructured 3D mesh with local properties applied
• Global environment and numerical parameters

Functions • Compute spacecraft-plasma interactions of the provided system

Dependencies N/A

Output
• Simulation results
• Monitoring data

4.7. Monitoring module
Name Monitoring module

Input • Monitoring data

SPIS-GEO

Architecture Design Document PAGE
15/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

Functions • Real-time monitoring of the running simulation

Dependencies • JFreeChart for 2D diagram display

Output N/A

4.8. Post-processing module
Name Geometry module

Input • Simulation results

Functions
• Visualization of the simulation results
• Generation of the simulation report
• Export of the data in various formats (VTK, ASCII, images)

Dependencies
• Keridwen reporting for reports generation
• VTK for data visualization
• JFreeChart for 2D diagram visualization

Output • Exported data (VTK, ASCII, images, reports)

SPIS-GEO

Architecture Design Document PAGE
16/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

5. Third-party components
5.1. GMSH

Gmsh [http://geuz.org/gmsh/] is an open-source 3D finite elements grid generator with a build-in CAD
engine. It is currently used by SPIS for the CAD modelling and the mesh generation.

5.2. VTK
The Visualization Toolkit [http://www.vtk.org/] is an open-source, software system for 3D computer
graphics, image processing and visualization.

It is used by SPIS in Cassandra [http://dev.artenum.com/projects/cassandra/], an open source
scientific data viewer to visualize 3D data (spacecraft groups and simulation results for instance).

5.3. JFreeChart
JFreeChart [http://www.jfree.org/jfreechart/] is an open source Java chart library that makes it easy for
developers to display professional quality charts in their applications. It is used in SPIS to display 2D
charts.

5.4. Keridwen data manager
Keridwen data manager is a component that offers data access capabilities to scientific applications. It
is designed to allow concurrent and remote access to any kind of data, as well as data persistency.

5.5. Keridwen command line
Kerdiwen command line is a command line utility based on JRosetta
[http://dev.artenum.com/projects/JRosetta] that allows controlling Keridwen modules from scripts.

5.6. Keridwen reporting
Keridwen reporting is a reports generation module that builds pre-formated PDF files from simulation
results.

5.7. Keridwen wizards
Keridwen wizards module, based on Shaman [to be released soon], is a wizard engine that
automatically controls wizard panels sequence from a XML configuration file.

5.8. JFreeMesh
JFreeMesh [http://dev.artenum.com/projects/JFreeMesh] is a 3D mesh library written in Java and
providing a high level API for mesh manipulation. It is used in SPIS for instance for mesh inspection
and local properties allocation.

SPIS-GEO

Architecture Design Document PAGE
17/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

6. Software requirements versus components
compliance matrix

Component Addresses SR #

Geometry module SR-SC-003, SR-SC-005

Mesh generation module SR-SC-004

Mesh inspection module SR-GE-004

Local properties module
SR-SC-001, SR-SC-002, SR-SC-006, SR-SC-007,
SR-SC-008

Environment and numerical parameters module
SR-EN-001, SR-EN-002; SR-EN-003, SR-EN-004,
SR-EN-005

Numerical kernel module (SPIS-NUM)
SR-EN-001, SR-EN-002; SR-EN-003, SR-EN-004,
SR-EN-005, SR-SM-001, SR-SM-002, SR-RP-001

Monitoring module SR-SM-002

Post-processing module SR-PP-001

Keridwen core components SR-EX-002; SR-EX-003; SR-EX-004

GMSH SR-SC-003, SR-SC-005

VTK SR-SC-002, SR-PP-001

JFreeChart SR-SM-002, SR-PP-001

Keridwen data manager SR-PR-001, SR-PR-002, SR-PR-003, SR-PR-004

Keridwen command line SR-EX-001

Keridwen reporting SR-PP-001

Keridwen wizards SR-GE-003, SR-GE-004, SR-GE-005

JFreeMesh SR-SC-001, SR-SC-002

SPIS-GEO

Architecture Design Document PAGE
18/18

Reference: ESA-SPISGEO-D4-ADD-2010-11-002 Version: 1 Revision: 0

Contract number: 4000101174 Date: 04/11/2010

7. Conclusion
SPIS-GEO application is proposed to be built on top of Keridwen 2.0, an OSGi-based Integrated
Modelling Environment to achieve a modular application, easier to maintain and to integrate with other
tools.

A description of the components of this modular application has been given as well as the compliance
matrix with the software requirements.

