POISSON SOLVER DOCUMENTATION

FRANCOIS ROGIER ET DOMINIQUE VOLPERT

1. INTRODUCTION

The objectives of this manual is first to provide the background on
the finite element methods used in the Poisson solver implemented in
SPIS and second to explain the meaning of some numerical parameters
that can be tunned by the user.

2. FINITE ELEMENT BACKGROUND

In this section, a brief survey of the main principles of the finite
element method is given. For more details we refer to the existing
litterature (see for example [1]).

2.1. Electrostatic equations and variationnal formulation. The
electrostatic potential u solves the Poisson equation in a 3D bounded
domain (2 :
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Where — 1s the exterior normal derivative on each point on the bound-
ary of (? iy pUl'yUT'R, 7, g, h are functions prescribed on the boundary,
I the space charge, and a a non negative function.

The boundary conditions have the physical meaning :

e u = g : Dirichlet conditions on I'p (the conductor part of the

spacecraftl where the potential is prescribed)

ou ) .
e — = h: Neumann condition on Iy ( the dielectric part of the

n
spacecraftl where the normal component of the electric field is

prescribed)

ou . s
e — +au = r : Robin condition on I'p (the external boundary

on
of the computational domain). Typically « = 1/R, where R
1
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is the distance between one point of the computational domain
and a point of the external boundary. The Robin condition is
a transparent condition modelling the behavior of the electro-
static potential far to the plasma.

The classical partial differential equations theory (|4]) provides an
equivalence form of equations 2.1 with the following variationnal form

(2.2)
/Vqu—i—/ auv:/FU—i—/ arv+/ hv Yv, v=0o0nTp
Q FR Q FR FN

u=gonlp

2.2. Finite element methods. The mesh of the computational do-
main () is a finite set of non overlapping tetrahedrons 7} such that
Q)= UTh where Tj, N T}, is empty, reduced to one node of the mesh

h
(a;;i = 1,N) or to a triangular face. Example of the figure 2.2 illus-

trates the requirements of the mesh : 71 N7T, = aiazay and TiNT5 = a4.
Vi is the space of piecewise linear continuous functions in each 7},. A

FIGURE 2.1. A picture of three tetrahedrons connected

basis of Vv is obtained by considering the piecewise linear continuous

functions ¢; such that ¢;(a;) = ¢;;. So, an approximation of u is de-

rived expanding it on this basis : u(z) ~ Z u;¢;(x) Denote by Vg
i=1,N
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the subspace of V) of dimension N, containing the functions of Vi

Efani)shing on ['p. Using 2.2, a discrete formulation is derived :
2.3

> / VoV + / agid; = / Fo, + / aigh; + / ho; Yo; € Vg
i=1,N Q FR Q FR FN
u; = g(a;),Vo; € Vy — Vg

That can be easily rewritten as a linear algebric system :
(2.4) AU =B

where A is a N; x Ny matrix, U the vector solution and B the right
hand side depending on f,g,h and r. A = (a;;)1<ij<n, With a;; =

/QVQSZ-V(;SJ'+/FR ag0;.

3. LINEAR SOLVER

Here, a brief detail of the linear algebric solver and some explanations
about the tunning parameters are provided.

3.1. Matrix storage. ¢; and ¢; overlap if their corresponding node
belong to the same tetrahedron, then a;; # 0 when a; and a; are
the nodes of the same tetrahedron 7j. This propertie leads to a sparse
matrix A that is exploited in the solver. The bandwidth [b of the matrix
is defined as the max; such that a;; # 0, j > [b Vi. So, the numbering
of the nodes is optimized in order to have the bandwidth minimum
using a Cuthill-Makee algorithm, thus the matrix can be efficiently
decomposed as Cholesky form with a mimimum storage requirement.
In fact, only Cholesky decomposition of a preconditionning of A is
performed in order to make efficient the iterative resolution of the linear
system. A is stored as a band matrix as it is explained in Lapack
documentation [3].

3.2. Iterative solver. The linear system is solved by a preconditionned
conjuguate gradient (PCG) algorithm [2]. The preconditionning A,,..
of A is a incomplete LU factorization: it is obtained by eliminating
lprec extra-diagonal of A. [, is a parameter < [b that can be tunned
by the user. It accelerates the convergence of the conjuguate gradient,
but is computational cost expensive when [, is choosen too large. For
example ljpec = 0, Apree = diag(A) (the default is I, = 1 correspond-
ing to a tridiagonal matrix) ). Each step of the conjuquate gradient
requires to solve the linear system A,,..x = y that is performed by a call
to the java Lapack library containing efficient routines to compute the
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solution of a linear system With band matrix. The stop criterium of the

|| Bl , the default value is ¢ = 1d — 6.

algorithm is given by € =
||B |

4. POISSON NONLINEAR SOLVER

A specific approach has been also implemented in order to take into
accourht a Boltzmann distribution for electrons. In this model n, =
noe FsTe | (T, is the electronic temperature, kg the Boltzmann constant
and n? the background electron density number). Thus, F = f —

qge_kBLTe (f is the space charge due to the heaviest charged particles,
q° =n?/¢y). Then the equation 2.1 becomes:

(4.1) { —Au + qge_WuTe = f dans

E% ation 4.1 is rewritten using the variationnal formulation :

/VUVU+/ ekBTev+/ auv—/fv+/ aw+/ hv¥Yv, v=00nTp
FR FR FN

u=gonlp

and the discrete formulation :

3w / V6V, + O T / bid; + / adidr; =
et

(4.3) | ” o,
/Qf(ﬁ] +/FROdZ(Z5] +/FN hgbj V¢J c VNd
u; = g(a;),Voi € Vv — Va

that can be rewritten as :
(4.4) AU+MU) =B

the nonlinear system is solved by a Newton algorithm with an op-
timized descent parameter. Each iteration of the Newton algorithm
requires a linear system solved by the PCG algorithm described in the
previous sections. So, the stop criteria is defined by W and
the convergence of the algorithm when the residual has reached the

stop criterium ¢; (the default value is 1d — 4).

5. EXTENSION TO SPECIFIC GEOMETRIES

In order to take into account specific geometries like booms or solar
panel, new developements have been made. These points are briefly
detailed in the following sections.
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5.1. Wire approximation. Taking conductors with very small radius
when compared to the typical dimension of the satellites into account
makes the calculation cost high or even impossible. Thus the cost
due to the refinement of the mesh in the neighborhood of the boom
leads to a considerable increase in the number of tetrahedrons and
the simulation time. The idea (see ref [5]) is to construct a boundary
condition on the closest nodes to the wire and simulating the presence
of the conducting. This boundary condition has the following form:

ou u(a;) r
~—(ai) + =
on rin(r;/rad)  rin(r;/rad)
where r; is the distance from the closest node ¢ to the wire, rad is the

radius of the wire and 7 is the value of the applied potential on the wire
(see figure 5.1) This boundary condition is implemented throught the

wire

tetrahedron

-

g

FIGURE 5.1. A wire with one of the closest tetrahedron

same formalism used in the Robin condition.

5.2. Thin surfaces. When solar panel are modelled, the thickness of
the panel has to be neglected to obtain a reasonnable computational
cost. Electrostatic potential is discontinuous across the thin surface
generating a singular pertubation at the edge of the surface. A decom-
position of the electric potential in a regular part and a singular part is
performed in order to extract the discontinuous parts u = t,eq + Using-
Using 15 @ global function that appears in the right hand side and be-
haves like the edge singularity of the laplace operator.

For example (see figure 5.2), if the panel is a plane where the potential
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is prescribed to u on the superior face and u_ on the inferior face, we

have uging ~ (u_ — u+)% +ug

thin surface

FIGURE 5.2. Solar panel with a polar coordinates system
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